Как называется первая фаза потенциала действия. Современные представления о механизме его генерации

Потенциал действия

Физической основой возбуждения является потенциал действия. По сути своей потенциал действия представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки). В результате наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса.

Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка?70 - ?90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы, и анионы. Снаружи - на порядок больше ионов натрия, кальция и хлора, внутри - ионов калия и отрицательно заряженных белковых молекул, аминокислот, органических кислот, фосфатов, сульфатов. Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток, подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий через синапс или путём диффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация) или положительную (деполяризация) сторону.

Для конкретики рассмотрим нервные клетки. В нервной ткани потенциал действия, как правило, возникает при деполяризации. По степени деполяризации раздражители могут быть подпороговыми, пороговыми и сверхпороговыми. При воздействии подпороговых раздражителей возникает так называемый локальный ответ - местная незначительная деполяризация мембраны, характеризуемая такими свойствами, как декрементность, суммация и градуальность.

Если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его (пороговый и сверхпороговый раздражители), клетка возбуждается, и от её тела к аксонам и дендритам распространяется волна электрического сигнала - потенциал действия (рис. 3). Это обусловлено тем, что на мембране клетки находятся ионные каналы. Мембрана клеток возбудимых тканей (нервной, секреторной и мышечной) содержит большое количество потенциалзависимых ионных каналов, способных быстро реагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциалзависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны.

Рис. 3.

Движущая сила в данном случае обеспечивается градиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны. Поток ионов натрия вызывает ещё большее и очень быстрое изменение мембранного потенциала, которое и называют потенциалом действия (в специальной литературе обозначается ПД).

По достижении значения мембранного потенциала 0 мВ деполяризация продолжается, переходя в стадию реверсии (перезарядки). В этот момент в формирование ПД включаются калиевые потенциал - зависимые каналы (медленные относительно натриевых), а натриевые каналы переходят в инактивированное состояние (закрываются). При достижении мембранного потенциала пикового значения - около 30 мВ - происходит нарастание восстановление его значения - реполяризация, обусловленная током ионов К в противоположную относительно Na сторону (из клетки по градиенту концентрации в межклеточную среду). При достижении исходного значения мембранного потенциала происходит непродолжительная гиперполяризация, обусловленная током ионов Cl в клетку (рис. 4).

Рис. 4.

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой же амплитуды, как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

При подробном рассмотрении ПД можно выделить 6 фаз его развития (рис. 5).

1. Медленная деполяризация - от МП до критического уровня деполяризации (КУД), по сути представляет собой локальный ответ на пороговый раздражитель.

2. Быстрая деполяризация - от КУД до 0 мВ, вызвана лавинообразным потоком ионов Naв клетку.

3. Реверсия (овершут, перехлест) - от 0 мВ до пика деполяризации, открываются K каналы, Naканалы инактивируются.

4. Быстрая реполяризация - от пика деполяризации до КУД, вызвана током ионов K из клетки.

5. Медленнаяреполяризация - от КУД до МП.

6. Гиперполяризация - перехлест через МП с восстановлением его значения, вызвана током ионов Clв клетку.


Рис. 5.

Рефрактерность и возбудимость

Инактивация натриевой системы в процессе генерации потенциала действия приводит к тому, что клетка в этот период не может быть повторно возбуждена, т. е. наблюдается состояние абсолютной рефрактерности. Постепенное восстановление потенциала покоя в процессе реполяризации дает возможность вызвать повторный потенциал действия, но для этого требуется сверхпороговый стимул, так как клетка находится в состоянии относительной рефрактерности.

Исследование возбудимости клетки во время локального ответа или во время отрицательного следового потенциала показало, что генерация потенциала действия возможна при действии стимула ниже порогового значения. Это состояние супернормальности (в фазу медленной реполяризации), или экзальтации (в фазу медленной деполяризации). И наконец, фаза гиперполяризации снижает возбудимость и проявляется в виде субнормального периода.

Продолжительность периода абсолютной рефрактерности ограничивает максимальную частоту генерации потенциалов действия данным типом клеток. Например, при продолжительности периода абсолютной рефрактерности 4 мс максимальная частота равна 250 Гц.

Рис. 6.

Н. Е. Введенский ввел понятие лабильности, или функциональной подвижности, возбудимых тканей. Мерой лабильности является количество потенциалов действия, которое способна генерировать возбудимая ткань в единицу времени. Очевидно, что лабильность возбудимой ткани в первую очередь определяется продолжительностью периода рефрактерности. Наиболее лабильными являются волокна слухового нерва, в которых частота генерации потенциалов действия достигает 1000 Гц.

Потенциал действия - электрический импульс, возникающий между внутренней и наружной сторонами мембраны и обусловленный изменениями ионной проницаемости мембраны.

Фазы ПД:

Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации.

Спайк (пиковый потенциал) - состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризациия)

Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны.

Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине.

Первый период - локальный ответ представляет собой активную местную деполяризацию, возникающую вследствие увеличения натриевой проницаемости клеточной мембраны. Однако при подпороговом стимуле начальное повышение натриевой проницаемости недостаточно велико, чтобы вызвать быструю деполяризацию мембраны. Локальный ответ возникает не только при подпороговом, но и при надпороговом раздражении и является составным компонентом потенциала действия. Таким образом, локальный ответ является первоначальной и универсальной формой реагирования ткани на различные по силе раздражения. Биологический смысл локального ответа состоит в том, что если раздражение мало, то ткань реагирует на него с минимальной тратой энергии, не включая механизмы специфической деятельности. В том же случае, когда раздражение надпороговое, локальный ответ переходит в потенциал действия. Период от начала раздражения до начала фазы деполяризации, когда локальный ответ, нарастая, снижает мембранный потенциал до критического уровня, называется латентным периодом или скрытым периодом. Продолжительность латентного периода зависит от характера раздражения (рис. 3.5.).

Второй период - фаза деполяризации. Эта часть потенциала действия характеризуется быстрым уменьшением мембранного потенциала и даже перезарядкой мембраны: внутренняя ее часть на некоторое время становится заряженной положительно, а внешняя отрицательно. В отличие от локального ответа скорость и величина деполяризации не зависит от силы раздражителя. Продолжительность фазы деполяризации в нервном волокне лягушки составляет около 0.2 - 0.5 мс.

Третий период потенциала действия - фаза реполяризации, ее продолжительность составляет 0.5-0.8 мс. В течение этого времени мембранный потенциал постепенно восстанавливается и достигает 75 - 85% потенциала покоя. В литературе второй и третий периоды часто называют пиком потенциала действия.

Колебания мембранного потенциала, следующие за пиком потенциала действия, называют следовыми потенциалами. Различают два вида следовых потенциалов -следовую деполяризацию и следовую гиперполяризацию, которые соответствуют четвертой и пятой фазе потенциала действия. Следовая деполяризация является продолжением фазы реполяризации и характеризуется более медленным (по сравнению с фазой реполяризации) восстановлением потенциала покоя. Следовая деполяризация переходит в следовую гиперполяризацию, представляющую собой временное увеличение мембранного потенциала выше исходного уровня. В миелинизированных нервных волокнах следовые потенциалы имеют более сложный характер. Следовая деполяризация может переходить в следовую гиперполяризацию, затем иногда возникает новая деполяризация, лишь после этого происходит полное восстановление потенциала покоя.

Ионный механизм возникновения потенциала действия

В основе потенциала действия лежат последовательно развивающиеся во времени изменения ионной проницаемости клеточной мембраны. При действии на клетку раздражителя проницаемость мембраны для ионов Na + резко повышается за счет активации (открывания) натриевых каналов (рис. 3.6.). При этом ионы Na + по концентрационному.

При этом ионы Na + по концентрационному градиенту интенсивно перемещаются из вне - во внутриклеточное пространство. Вхождению ионов Na + в клетку способствует и электростатическое взаимодействие. В итоге проницаемость мембраны для Na + становится в 20 раз больше проницаемости для ионов К + .

Поскольку поток Na + в клетку начинает превышать калиевый ток из клетки, то происходит постепенное снижение потенциала покоя,приводящее к реверсии - изменению знака мембранного потенциала. При этом внутренняя поверхность мембраны становится положительной по отношению к ее внешней поверхности. Указанные изменения мембранного потенциала соответствуют восходящей фазе потенциала действия (фазе деполяризации)

Мембрана характеризуется повышенной проницаемостью для ионов Na + лишь очень короткое время 0.2 - 0.5 мс. После этого проницаемость мембраны для ионов Na + вновь понижается, а для К + возрастает. В результате поток Na + внутрь клетки резко ослабляется, а ток К + из клетки усиливается (рис. 3.7.).


В течение потенциала действия в клетку поступает значительное количество Na + , а ионы К + покидают клетку. Восстановление клеточного ионного баланса осуществляется благодаря работе Na + ,К + - АТФазного насоса, активность которого возрастает при повышении внутренней концентрации ионов Na + и увеличении внешней концентрации ионов К + . Благодаря работе ионного насоса и изменению проницаемости мембраны для Na + и К + первоначальная их концентрация во внутри - и внеклеточном пространстве постепенно восстанавливается.

Итогом этих процессов и является реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к внешней поверхности мембраны.

Потенциалом действия называют быстрое изменение мембранного потенциала, возникающее при возбуждении нервных, мышечных и некоторых железистых клеток. В основе его возникновения лежат изменения ионной проницаемости мембраны. В развитии потенциала действия выделяют четыре последовательных периода: 1) локальный ответ; 2) деполяризация; 3) реполяризация и 4) следовые потенциалы (рис. 2.11).

Локальный ответ представляет собой активную местную деполяризацию, возникающую вследствие увеличения натриевой проницаемости клеточной мембраны. Уменьшение мембранного потенциала называется деполяризацией. Однако при подпороговом стимуле начальное повышение натриевой проницаемости недостаточно велико, чтобы вызвать быструю деполяризацию мембраны. Локальный ответ возникает не только при подпороговом, но и при надпороговом раз-

Рис. 2.11.

1 - локальный ответ; 2 - фаза деполяризации; 3 - фаза реполяризации; 4 - отрицательный следовой потенциал; 5 - положительный (гиперполяризационный) следовой потенциал

дражении и является составным компонентом потенциала действия. Таким образом, локальный ответ является первоначальной и универсальной формой реагирования ткани на различные по силе раздражения. Биологический смысл локального ответа состоит в том, что если раздражитель по силе мал, то ткань реагирует на него с минимальной тратой энергии, не включая механизмы специфической деятельности. В том же случае, когда раздражение надпороговое, локальный ответ переходит в потенциал действия. Период от начала раздражения до начала фазы деполяризации, когда локальный ответ, нарастая, снижает мембранный потенциал до критического уровня (КУД), называется латентным или скрытым периодом, продолжительность которого зависит от силы раздражения (рис. 2.12).

Фаза деполяризации характеризуется быстрым уменьшением мембранного потенциала и даже перезарядкой мембраны: внутренняя ее часть на некоторое время становится заряженной положительно, а внешняя - отрицательно. Изменение знака заряда на мембране называют извращением - реверсией потенциала. В отличие от локального ответа скорость и величина деполяризации не зависят от силы раздражителя. Продолжительность фазы деполяризации в нервном волокне лягушки составляет около 0,2-0,5 мс.

Продолжительность фазы реполяризации составляет 0,5-0,8 мс. Восстановление исходной величины поляризации мембраны называют реполяризацией. В течение этого времени мембранный потен-


Рис. 2.12. Потенциалы действия, возникающие в ответ на пороговое раздражение коротким (А) и длительным (Б) стимулами Раздражающие стимулы, при воздействии которых получены ответы А и Б: ПП - потенциал покоя; Екуд. - критический уровень деполяризации мембраны (по А.Л. Каталымову)

циал постепенно восстанавливается и достигает 75-85% потенциала покоя. В литературе второй и третий периоды часто называют пиком потенциала действия.

Колебания мембранного потенциала, следующие за пиком потенциала действия, называют следовыми потенциалами. Различают два вида следовых потенциалов - следовую деполяризацию и следовую гиперполяризацию, которые соответствуют четвертой и пятой фазам потенциала действия. Следовая деполяризация (отрицательный следовой потенциал) является продолжением фазы реполяризации и характеризуется более медленным (по сравнению с фазой реполяризации) восстановлением потенциала покоя. Следовая деполяризация переходит в следовую гиперполяризацию (положительный следовой потенциал), представляющую собой временное увеличение мембранного потенциала выше исходного уровня. Увеличение мембранного потенциала называется гиперполяризацией. В миелинизирован- ных нервных волокнах следовые потенциалы имеют более сложный характер: следовая деполяризация может переходить в следовую гиперполяризацию, затем иногда возникает новая деполяризация, лишь после этого происходит полное восстановление потенциала покоя.

Ионный механизм возникновения потенциала действия. Основу потенциала действия составляют последовательно развивающиеся во времени изменения ионной проницаемости клеточной мембраны.

При действии на клетку раздражителя проницаемость мембраны для ионов Na + резко повышается за счет активации (открывания) натриевых каналов.

При этом ионы Na + по концентрационному градиенту интенсивно перемещаются из вне во внутриклеточное пространство. Вхождению ионов Na + в клетку способствует и электростатическое взаимодействие. В итоге проницаемость мембраны для Na + становится в 20 раз больше проницаемости для ионов К + .

Сначала деполяризация идет сравнительно медленно. Когда мембранный потенциал уменьшается на 10-40 мВ, скорость деполяризации резко увеличивается и кривая потенциала действия круто поднимается верх. Уровень мембранного потенциала, при котором резко увеличивается скорость деполяризации мембраны, благодаря тому что поток ионов Na + внутрь клетки оказывается большим, чем поток ионов К + наружу, называют критическим уровнем деполяризации.

Поскольку поток Na + в клетку начинает превышать калиевый ток из клетки, происходит постепенное снижение потенциала покоя, приводящее к реверсии - изменению знака мембранного потенциала. При этом внутренняя поверхность мембраны становится электроположительной по отношению к ее внешней электроотрицательной поверхности. Указанные изменения мембранного потенциала соответствуют восходящей фазе потенциала действия (фазе деполяризации).

Мембрана характеризуется повышенной проницаемостью для ионов Na + лишь очень короткое время (0,2-0,5 мс). После этого проницаемость мембраны для ионов Na + вновь понижается, а для К + - возрастает. В результате поток Na + внутрь клетки резко ослабляется, а ток К + из клетки усиливается.

В течение потенциала действия в клетку поступает значительное количество Na + , а ионы К + покидают клетку. Восстановление клеточного ионного баланса осуществляется благодаря работе натрий- калиевого насоса, активность которого возрастает при повышении внутренней концентрации ионов Na + и увеличении внешней концентрации ионов К + . Благодаря работе ионного насоса и изменению проницаемости мембраны для Na + и К + их концентрация во внутри- и внеклеточном пространстве постепенно восстанавливается.

Итогом этих процессов и является реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к внешней поверхности мембраны.

Следовой отрицательный потенциал регистрируется в период, когда № + -каналы инактивированы и реполяризация, связанная с выходом ионов К + из клетки, происходит медленнее, чем во время нисходящей части пика потенциала действия. Это длительное сохранение отрицательности наружной поверхности возбужденного участка по отношению к невозбужденному называют следовой деполяризацией. Следовая деполяризация означает, что в этот период наружная поверхность возбудимого образования имеет меньший положительный заряд, чем в состоянии покоя.

Следовой положительный потенциал соответствует периоду увеличения мембранного потенциала покоя, т.е. гиперполяризации мембраны. Во время следового положительного потенциала наружная поверхность клетки более положительно заряжена, чем в состоянии покоя. Следовой положительный потенциал часто называют следовой гиперполяризацией. Она объясняется длительным сохранением повышенной проницаемости для ионов К + . Вследствие этого на мембране устанавливается потенциал, равный потенциалу равновесия (для К + - 90 мВ).

Изменения возбудимости в процессе развития возбуждения. Воздействуя раздражителями разной силы в различные фазы потенциала действия, можно проследить, как изменяется возбудимость в ходе возбуждения. На рис. 2.13" видно, что период локального ответа характеризуется повышенной возбудимостью (мембранный потенциал приближается к критическому уровню деполяризации); во время фазы деполяризации мембрана утрачивает возбудимость (клетка становится рефрактерной), которая постепенно восстанавливается в ходе реполяризации.

Выделяют период абсолютной рефрактерности , который в нервных клетках продолжается около 1 мс и характеризуется их полной невоз- будимостью. Период абсолютной рефрактерности возникает в результате практически полной инактивации (непроницаемости) натриевых каналов и повышения калиевой проводимости мембраны. Даже в состоянии покоя активированы не все каналы мембраны, 40% из них находятся в состоянии инактивации. При деполяризации количество инактивированных каналов увеличивается и вершина пика потенциала действия соответствует инактивации всех натриевых каналов.

По мере реполяризации мембраны происходит реактивация натриевых каналов. Это период относительной рефрактерности : потенциал действия может возникнуть только при действии более сильных (надпороговых) раздражителей.

В период отрицательного следового потенциала фаза относительной рефрактерности сменяется фазой повышенной (супернормальной) возбудимости. В этот период порог раздражения снижен по сравнению с исходным значением, поскольку мембранный потенциал ближе к критической величине, чем в состоянии покоя (рис. 2.14) .

Фаза следовой гиперполяризации, обусловленная остаточным выходом калия из клетки, напротив, характеризуется снижением

Рис. 2.13.

А - компоненты волны возбуждения: 1 -деполяризация; 2 - реполяризация; МП - мембранный потенциал; мВ - микровольт; МК - критический уровень деполяризации: а - длительность порогового потенциала; б - длительность потенциала действия; в - следовая отрицательность; г - следовая положительность; Б - изменения возбудимости в разные фазы волны возбуждения; УВ - уровень возбудимости в покое: а - повышение возбудимости в период порогового потенциала; б - падение возбудимости до нуля во время протекания потенциала действия (абсолютная рефрактерность); в, - возвращение возбудимости к исходному уровню во время следовой отрицательности (относительная рефрактерность); в 2 - повышение возбудимости в период конца следовой отрицательности (экзальтация"или супернормальность); в - весь период следовой отрицательности; г - падение возбудимости в период гиперполяризации (субнормальность)

возбудимости. Поскольку мембранный потенциал больше, чем в состоянии покоя, требуется более сильный раздражитель для его «смещения» до уровня критической деполяризации.

Таким образом, в динамике возбудительного процесса изменяется способность клетки реагировать на раздражители, т.е. возбудимость.


Рис. 2.14.

Величина мембранного потенциала: Е 0 - в покое; - в фазе экзальтации; Е 2 - в фазе гиперполяризации. Величина порогового потенциала: е 0 - в покое; е, - в фазе экзальтации; е 2 - в фазе гиперполяризации

Это имеет большое значение, поскольку в момент наибольшего возбуждения (пика потенциала действия) клетка становится абсолютно невозбудимой, что защищает ее от гибели и повреждений.

  • См.: Леонтьева Н.Н., Маринова К.В. Указ. соч.
  • Там же.

Раздражители

По природе раздражители подразделяют на:
• физические (звук, свет, температура, вибрация, осмотическое давление), особое значение для биологических систем имеют электрические раздражители;
• химические (ионы, гормоны, нейромедиаторы, пептиды, ксенобиотики);
• информационные (голосовые команды, условные знаки, условные стимулы).

По биологическому значению раздражители подразделяют на:
• адекватные – раздражители, для восприятия которых биологическая система имеет специальные приспособления;
• неадекватные – раздражители, не соответствующие природной специализации рецепторных клеток, на которые они действуют.

Раздражитель вызывает возбуждение только в том случае, если он достаточно силен. Порог возбуждения – минимальная сила раздражителя, достаточная для того, чтобы вызвать возбуждение клетки. Выражение «порог возбуждения» имеет несколько синонимов: порог раздражения, пороговая сила раздражителя, порог силы.

Возбуждение как активная реакция клетки на раздражитель

Реакция клетки на внешнее воздействие (раздражение) отличается от реакции небиологических систем следующими особенностями:
• энергией для реакции клетки служит не энергия раздражителя, а энергия, образующаяся в результате метаболизма в самой биологической системе;
• сила и форма реакции клетки не определяется силой и формой внешнего воздействия (если сила раздражителя выше пороговой).

В некоторых специализированных клетках реакция на раздражитель проявляется особенно интенсивно. Такую интенсивную реакцию называют возбуждением. Возбуждение – активная реакция специализированных (возбудимых) клеток на внешнее воздействие, проявляющаяся в том, что клетка начинает выполнять присущие ей специфические функции.

Возбудимая клетка может находиться в двух дискретных состояниях:
• состоянии покоя (готовность к реагированию на внешнее воздействие, совершение внутренней работы);
• состоянии возбуждения (активное выполнение специфических функций, совершение внешней работы).

В организме существует 3 типа возбудимых клеток:
• нервные клетки (возбуждение проявляется генерацией электрического импульса);
• мышечные клетки (возбуждение проявляется сокращением);
• секреторные клетки (возбуждение проявляется выбросом в межклеточное пространство биологически активных веществ).

Возбудимость – способность клетки переходить из состояния покоя в состояние возбуждения при действии раздражителя. Разные клетки имеют различную возбудимость. Возбудимость одной и той же клетки меняется в зависимости от ее функционального состояния.

Возбудимая клетка в состоянии покоя

Мембрана возбудимой клетки поляризована. Это означает, что имеется постоянная разность потенциалов между внутренней и наружной поверхностью клеточной мембраны, которую называют мембранный потенциал (МП). В состоянии покоя величина МП составляет –60…–90 мВ (внутренняя сторона мембраны заряжена отрицательно относительно наружной). Значение МП клетки в состоянии покоя называют потенциалом покоя (ПП). МП клетки можно измерять, разместив один электрод внутри, а другой снаружи клетки (рис. 1 А) .

Уменьшение МП относительно его нормального уровня (ПП) называют деполяризацией , а увеличение – гиперполяризацией . Под реполяризацией понимают восстановление исходного уровня МП после его изменения (см. рис. 1 Б).

Электрические и физиологические проявления возбуждения

Рассмотрим различные проявления возбуждения на примере раздражения клетки электрическим током (рис. 2).

При действии слабых (подпороговых) импульсов электрического тока в клетке развивается электротонический потенциал. Электротонический потенциал (ЭП) – сдвиг мембранного потенциала клетки, вызываемый действием постоянного электрического тока . ЭП есть пассивная реакция клетки на электрический раздражитель; состояние ионных каналов и транспорт ионов при этом не изменяется. ЭП не проявляется физиологической реакцией клетки. Поэтому ЭП не является возбуждением.

При действии более сильного подпорогового тока возникает более пролонгированный сдвиг МП – локальный ответ. Локальный ответ (ЛО) – активная реакция клетки на электрический раздражитель, однако состояние ионных каналов и транспорт ионов при этом изменяется незначительно. ЛО не проявляется заметной физиологической реакцией клетки. ЛО называют местным возбуждением , так как это возбуждение не распространяется по мембранам возбудимых клеток.

При действии порогового и сверхпорогового тока в клетке развивается потенциал действия (ПД). ПД характеризуется тем, что значение МП клетки очень быстро уменьшается до 0 (деполяризация), а затем мембранный потенциал приобретает положительное значение (+20…+30 мВ), т. е. внутренняя сторона мембраны заряжается положительно относительно наружной. Затем значение МП быстро возвращается к исходному уровню. Сильная деполяризация клеточной мембраны во время ПД приводит к развитию физиологических проявлений возбуждения (сокращение, секреция и др.). ПД называют распространяющимся возбуждением , поскольку, возникнув в одном участке мембраны, он быстро распространяется во все стороны.

Механизм развития ПД практически одинаков для всех возбудимых клеток. Механизм сопряжения электрических и физиологических проявлений возбуждения различен для разных типов возбудимых клеток (сопряжение возбуждения и сокращения, сопряжение возбуждения и секреции).

Устройство клеточной мембраны возбудимой клетки

В механизмах развития возбуждения участвуют 4 вида ионов: K+ , Na+ , Ca++ , Cl – (ионы Ca++ участвуют в процессах возбуждения некоторых клеток, например кардиомиоцитов, а ионы Cl – важны для развития торможения). Мембрана клетки, представляющая собой липидный бислой, непроницаема для этих ионов. В мембране существуют 2 типа специализированных интегральных белковых систем, которые обеспечивают транспорт ионов через клеточную мембрану: ионные насосы и ионные каналы.

Ионные насосы и трансмембранные ионные градиенты

Ионные насосы (помпы) – интегральные белки, которые обеспечивают активный перенос ионов против градиента концентрации. Энергией для транспорта служит энергия гидролиза АТФ. Различают Na+ / K+ помпу (откачивает из клетки Na+ в обмен на К+), Ca++ помпу (откачивает из клетки Ca++), Cl– помпу (откачивает из клетки Cl –).

В результате работы ионных насосов создаются и поддерживаются трансмембранные ионные градиенты:
• концентрация Na+, Ca++, Cl – внутри клетки ниже, чем снаружи (в межклеточной жидкости);
• концентрация K+ внутри клетки выше, чем снаружи.

Ионные каналы

Ионные каналы – интегральные белки, которые обеспечивают пассивный транспорт ионов по градиенту концентрации. Энергией для транспорта служит разность концентрации ионов по обе стороны мембраны (трансмембранный ионный градиент).

Неселективные каналы
• пропускают все типы ионов, но проницаемость для ионов K+ значительно выше, чем для других ионов;
• всегда находятся в открытом состоянии.

Селективные каналы обладают следующими свойствами:
• пропускают только один вид ионов; для каждого вида ионов существует свой вид каналов;
• могут находиться в одном из 3 состояний: закрытом, активированном, инактивированном.

Избирательная проницаемость селективного канала обеспечивается селективным фильтром , который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.

Изменение состояния канала обеспечивается работой воротного механизма , который представлен двумя белковыми молекулами. Эти белковые молекулы, так называемые активационные ворота и инактивационные ворота, изменяя свою конформацию, могут перекрывать ионный канал.

В состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт) (рис. 3). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня МП канал возвращается в исходное (закрытое) состояние.

В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:
• хемочувствительные каналы – сигналом к открытию активационных ворот является изменение конформации ассоциированного с каналом белка-рецептора в результате присоединения к нему лиганда;
• потенциалчувствительные каналы – сигналом к открытию активационных ворот является снижение МП (деполяризация) клеточной мембраны до определенного уровня, который называют критическим уровнем деполяризации (КУД).

Механизм формирования потенциала покоя

Мембранный потенциал покоя образуется главным образом благодаря выходу К+ из клетки через неселективные ионные каналы. Утечка из клетки положительно заряженных ионов приводит к тому, что внутренняя поверхность мембраны клетки заряжается отрицательно относительно наружной.

Мембранный потенциал, возникающий в результате утечки К+ , называют «равновесным калиевым потенциалом» (Ек ). Его можно рассчитать по равнению Нернста

где R – универсальная газовая постоянная,
Т – температура (по Кельвину),
F – число Фарадея,
[К+] нар – концентрация ионов К+ снаружи клетки,
[К+] вн – концентрация ионов К+ внутри клетки.

ПП, как правило, очень близок к Ек, но не точно равен ему. Эта разница объясняется тем, что свой вклад в формирование ПП вносят:

• поступление в клетку Na+ и Cl– через неселективные ионные каналы; при этом поступление в клетку Cl– дополнительно гиперполяризует мембрану, а поступление Na+ – дополнительно деполяризует ее; вклад этих ионов в формирование ПП невелик, так как проницаемость неселективных каналов для Cl– и Na + в 2,5 и 25 раза ниже, чем для К+ ;

• прямой электрогенный эффект Na+ /К+ ионного насоса, возникающий в том случае, если ионный насос работает асимметрично (количество переносимых в клетку ионов K+ не равно количеству выносимых из клетки ионов Na+).

Механизм развития потенциала действия

В потенциале действия выделяют несколько фаз (рис. 4):

• фаза деполяризации;
• фаза быстрой реполяризации;
• фаза медленной реполяризации (отрицательный следовый потен­циал);
• фаза гиперполяризации (положительный следовый потенциал).

Фаза деполяризации . Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциалчувствительных Na+-каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

Фаза быстрой и медленной реполяризации . В результате деполяризации мембраны происходит открытие потенциалчувствительных К+ -каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется.

Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+ / K+ помпы.

Овершут – период времени, в течение которого мембранный потенциал имеет положительное значение.

Пороговый потенциал – разность между мембранным потенциалом покоя и критическим уровнем деполяризации. Величина порогового потенциала определяет возбудимость клетки – чем больше пороговый потенциал, тем меньше возбудимость клетки.

Изменение возбудимости клетки при развитии возбуждения

Если принять уровень возбудимости клетки в состоянии физиологического покоя за норму, то в ходе развития цикла возбуждения можно наблюдать ее колебания. В зависимости от уровня возбудимости выделяют следующие состояния клетки (см. рис. 4).

• Супернормальная возбудимость (экзальтация ) – состояние клетки, в котором ее возбудимость выше нормальной. Супернормальная возбудимость наблюдается во время начальной деполяризации и во время фазы медленной реполяризации. Повышение возбудимости клетки в эти фазы ПД обусловлено снижением порогового потенциала по сравнению с нормой.

• Абсолютная рефрактерность – состояние клетки, в котором ее возбудимость падает до нуля. Никакой, даже самый сильный, раздражитель не может вызвать дополнительного возбуждения клетки. Во время фазы деполяризации клетка невозбудима, поскольку все ее Na+ -каналы уже находятся в открытом состоянии.

• Относительная рефрактерность – состояние, в котором возбуди­мость клетки значительно ниже нормальной; только очень сильные раздражители могут вызвать возбуждение клетки. Во время фазы реполяризации каналы возвращаются в закрытое состояние и возбудимость клетки постепенно восстанавливается.

• Субнормальная возбудимость характеризуется незначительным снижением возбудимости клетки ниже нормального уровня. Это уменьшение возбудимости происходит вследствие возрастания порогового потенциала во время фазы гиперполяризации.

Закон «всё или ничего» - правило, согласно которому на подпороговое раздражение возбудимая клетка не дает ответа, а на пороговое раздражение дает сразу максимальный ответ, причем при дальнейшем повышении силы раздражения величина ответа не изменяется.

№100. Потенциал действия: графический вид и характеристики, механизмы возникновения и развития.

Потенциа́л де́йствия - волна возбуждении, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

А – спокойное состояние; В –мембрана на которой возник потенциал действия

В основе любого потенциала действия лежат следующие явления:

1. Мембрана живой клетки поляризована - её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности - бо́льшее количество отрицательно заряженных частиц (анионов).

2. Мембрана обладает избирательной проницаемостью - её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.

3. Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю.

Третье явление является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

1. Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).

2. Пиковый потенциал, состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).

3. Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).

4. Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).



№101.Потенциал-зависимые ионные каналы: строение, свойства, функционирование

Для каналов характерна ионная специфичность. Каналы одного типа пропускают только ионы калия, другого - только ионы натрия и т. д.

Ионные потенциал-зависимые каналы - это каналы, которые открываются и закрываются в ответ на изменение мембранного потенциала, например, натриевые каналы, ответственные за потенциал действия Если мембранный потенциал поддерживать на уровне потенциала покоя, натриевый ток практически отсутствует, что означает, что натриевые каналы закрыты. Если теперь сдвинуть мембранный потенциал в положительную сторону и удерживать его на постоянном уровне, то потенциал-зависимые натриевые каналы откроются и ионы натрия начнут передвигаться в клетку по градиенту концентрации. Этот натриевый ток достигнет максимума и Через несколько миллисекунд ток падает почти до нуля. Закрывшись, каналы переходят в инактивированное состояние, отличающееся от первоначального закрытого состояния, при котором они были способны открыться в ответ на деполяризацию мембраны. Каналы остаются инактивированными до тех пор, пока мембранный потенциал не вернется к исходному отрицательному значению и не закончится восстановительный период длительностью в несколько миллисекунд.

При регистрации токов в очень малых участках мембраны было обнаружено, что канал открывается по принципу "все или ничего". Открытые каналы обладают одинаковой проводимостью, но открываются и закрываются независимо друг от друга, поэтому суммарный ток через мембрану всей клетки с ее многочисленными каналами определяется не степенью открытости каналов, а вероятностью быть открытым для каждого отдельного канала.

_______________________________________________________________________________________

№102. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.

Скорость проведения в нервных волокнах колеблется от 0,25 м/сек в очень тонких немиелинизированных волокнах

Распространение потенциала действия вдоль нервного волокна(аксона) обусловлено возникновением локальных токов, образующихся между возбужденным и невозбужденным участками клетки. В состоянии покоя внешняя поверхность клеточной мембраны имеет положительный потенциал, а внутренняя отрицательный. В момент возбуждения полярность мембраны меняется на противоположную. В результате этого между возбужденным и невозбужденным участками мембраны возникает разность потенциалов, это и приводит к появлению между этими участками локальных токов. На поверхности клеток локальный ток течет от невозбужденного участка к возбужденному, внутри клетки – в обратном направлении. Локальный ток раздражает соседние невозбужденные участки и вызывает увеличение проницаемости мембран. Это приводит к возникновению потенциалов действия в соседних участках. В то же время, в ранее возбужденном участке происходят восстановительные процессы реполяризации Вновь возбужденный участок в свою очередь становиться элекроотрицательным и возникающий локальный ток раздражает следующий за ним участок. Этот процесс повторяется многократно и обусловливает распространение импульсов возбуждения по всей длинне клетки в обоих направлениях. В нервной системе импульсы проходят лишь в определенном направлении из-за наличия синапсов, обладающих односторонней проводимостью.

Удельное сопротивление биомембран велико, но вследствии их малой толщины сопротивление изоляции в сотни тысяч раз меньше, чем у технического кабеля.По этому однородное нервное волокно не может проводить электрический сигнал на далекие расстояния.

λ=корень из (dR/4р)

d- диаметр волокна, R - поверхностное сопротивление мембраны в Ом * м 2 и р-удельное сопротивление аксоплазмы в Ом*м.

С увеличением λ (постоянная длины) степень затухания сигнала уменьшается, при этом возрастает скорость проведения импульса. Увеличения постоянной длинны λ можно добиться путем увеличения диаметра d аксона.

_______________________________________________________________________________________

№103. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.

У высокоорганизованных животных затухание сигнала предотвращается с помощью миелиновой оболочки вокруг аксона. Примерно через каждые 1-3 мм вдоль миелиновой оболочки имеется перехват Ранвье.

Центральной его частью является аксон, по мембране которого проводится потенциал действия. Аксон заполнен аксоплазмой - вязкой внутриклеточной жидкостью.

С увеличением λ степень затухания сигнала уменьшается, при этом возрастает скорость проведения импульса.

Удельное сопротивление миелина значительно выше удельного сопротивления других биологических мембран.кроме того толщина миелиновой оболочки во много раз больше толщины обычной мембраны, что приводит к возрастанию диаметра волокна и соответственно величины постоянной длины. λ

В связи с большим сопротивлением миелиновой оболочки по поверзности аксона токи протекать не могут. При возбуждении одного узла возникают токи между ним и другими узлами. Ток подошедший к другому узлу, возбуждает его, вызывает появление в этом месте потенциала действия, и так процесс распространяется по всему волокну. Затраты энергии на распространение сигнала по волокну, покрытому миелином значительно меньше чем по немиелинизированному.

_______________________________________________________________________________________

№104. Назначение и определение рецепции. Схема движения информации при рецепции.

Рецепция – это восприятие организмом энергии раздражителя, несущего информацию и преобразующим её в электрические сигналы нервного возбуждения.

Рецепция необходима для:

1. Оптимизации поведения живой системы в зависимости от ситуации во внешнем мире

2. Непрерывные регуляции характеристик состояния внутренних органов, сред и тканей организма

Простейшая блок схема (квадратики 1-9, 5 и 8 -над линией):

1. Источник информации

2. Стимул, воспринимаемый организмом

3. Устройство подготовки и сбора сигнала для рецепции

4. Непосредственно рецептор (устройство воспринимающее сигнал и преобразующее его в электронные импульсы)

5. Нервные пучки, проводящие импульсы в корковый центр

6. Корковый центр, воспринимающий и осуществляющий анализ первичной информации

7. ЦНС – окончательная обработка и оценка информации

8. Эфферентные нервные пути передающие информацию от ЦНС к органу или системе то есть эффектору.

9. Исполнитель

№105. Определение рецептора. Органы чувств и анализаторы. Примеры использования рецепции в жизнедеятельности организма.

Рецептор – это устройство воспринимающее сигнал и преобразующее его в электронные импульсы

Биологические анализаторы – это биологические системы, предназначенные для восприятия, а иногда и обработки информации из внешней и внутренней среды

Порог ступени : ни одна сенсорная система не способна воспринимать сигнал сколь угодно малой интенсивности. Она воспринимает только те сигналы которые больше I порога ступени.

Порок интенсивности – минимальная единица, которая вызывает чувствительность

Kc = I ад.ст./ I неад. ст.

Частотная характеристика – стимулы, имеющие колебательную природу.

При постоянной I стимула (I ст = const), но изменении его частоты происходит адекватное отражение картины, но при определенном диапазоне частот – картина искажается, на еще большем отдалении сигнал перестает восприниматься.

Амплитудная характеристика связывает I ощущения с I стимула.

Предел разрешения: тип различия между параметрами сигнала (либо по амплитуде, либо по частоте), которые при данных условиях еще вызывают ощущения изменения.

Орган чувств - сложившаяся в процессе эволюции специализированная периферическая анатомо-физиологическая система, обеспечивающая благодаря своим рецепторам получение и первичный анализ информации из окружающего мира и от других органов самого организма, то есть из внешней и внутренней среды организма.

Дистантные органы чувств воспринимают раздражения на расстоянии (например, органы зрения, слуха, обоняния); другие органы (вкусовые и осязания) - лишь при непосредственном контакте. Одни органы чувств могут в определенной степени дополнять другие. Например, развитое обоняние или осязание может в некоторой степени компенсировать слабо развитое зрение.

Примеры использования рецепции в жизнедеятельности организма.??

№106. Классификация рецепторов.

1. По методу получения информации:

Экстерорецепторы (из внешней среды)

Интерорецепторы (изнутри)

2. По природе воспринимаемых раздражителей:

Механорецепторы (рецепторы расширения легких)

Хеморецепторы (рецепторы кожных реакций, слуха, обоняния, вкуса)

Терморецепторы (тепловые, холодовые)

Электрорецепторы (боковые линии у рыб)

Магниторецепторы (навигация при перемещении у птиц)

3. По степени универсальности:

Мономодальные – фиксирующие раздражение только одного раздражителя

Полимодальные - фиксирующие раздражение нескольких раздражителей

№107. Строение рецепторов.

СНО (свободные нервные окончания). Аксон разделяется на нервные окончания, потерявшие способность к возбуждению, являются полимодальными образованиями.

ИНО (инкапсулированные чувствительные окончания)

Они были сконструированы, как чувствительные специализированные клетки мономодальные. Являются видоизменёнными аксонами нейронов, иногда это эпителиальные клетки.

По внутреннему строению рецепторы бывают как простейшими, состоящими из одной клетки, так и высокоорганизованными, состоящими из большого количества клеток, входящих в состав специализированного органа чувств.

Наиболее примитивными рецепторами считаются механические, реагирующие на прикосновение и давление. Разница между этими двумя ощущениями количественная; прикосновение обычно регистрируется тончайшими окончаниями нейронов, расположенными близко к поверхности кожи, в основаниях волосков или усиков. Есть и специализированные органы – тельца Мейснера. На давление же реагируют тельца Пачини, состоящие из единственного нервного окончания, окружённого соединительной тканью. Импульсы возбуждаются за счёт изменения проницаемости мембраны, возникающей благодаря её растяжению.

№108. Общие механизмы рецепции. Рецепторные потенциалы.

1 этап: Когда приходит адекватный для данного рецептора стимул. Взаимодействует с рецептирующим субстратом, который обычно находятся в мембране клетки.

2 этап: В R: происходит локальное изменение мембранной разности потенциалов. Сам рецептор не является возбудимой клеткой, так как там нет потенциал зависимых каналов! Изменение – рецепторный потенциал (РП), не подвергается закону «все или ничего», зависит от длительности действия стимула и от его интенсивности.

3 этап: Генерации потенциала приводит в R: к возобновлению потенциала действия (ПД).

Деполяризация называется рецепторным потенциалом (или генераторным потенциалом). Рецепторный потенциал обусловлен повышением Na+ - проводимости мембраны дендритов, в результате чего вход ионов натрия создает деполяризующий рецепторный потенциал, который электротонически распространяется к соме. Эта первичная трансформация стимула в рецепторный потенциал называется преобразованием, а рецептор, таким образом, является преобразователем.

Исключение составляют рецепторные потенциалы первичных зрительных клеток сетчатки, являющиеся гиперполяризующими.

Стимул не служит источником энергии для рецепторного потенциала, он только контролирует путем взаимодействия с мембранными процессами вход ионов через мембрану, основанный на трансмембранной разности их концентраций.

Рецепторный потенциал электротонически распространяется от дендритов по соме, деполяризует основание аксона и если деполяризация превысит порог для возбуждения, в аксоне возникает серия потенциалов действия, частота которой зависит от амплитуды рецепторного потенциала. Потенциалы действия проводятся в ЦНС и несут в форме частотного кода всю информацию о величине и длительности стимулов.

Потенциа́л де́йствия - волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого, наружная поверхность этого участка становится отрицательно заряженной, по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

№109. Кодирование информации в органах чувств.

Цели биологической системы:

1. самосохранение

2. продолжение рода

Любая информация, приходящая в рецепторные системы переносится определенным физическим носителем (длительные анализатор – электро-магнитные). Стимулы преобразуется в рецепторный потенциал, а затем в потенциала действия.

v(ню) = k log I(ст) – частота следующих пачек ПД пропорциональна интенсивности стимула.

В сенсорных системах широко применяется кодирование силы раздражителя:
1) путём изменения частоты импульсов в волокнах;
2) количеством задействованных нервных элементов;
3) также широко применяется кодирование качества раздражителя особой структурой ответа рецептора и волокна, так называемым паттерном (рисунком) ответа.

Согласно теории структуры ответа качества раздражителя кодируются рисунком (паттерном) пачки ПД, т.е. количеством, частотой и характерным распределением потенциалов действия внутри каждой пачки импульсов, а также количеством, продолжительностью, частотой самих пачек, периодичностью их следования, продолжительностью межимпульсных интервалов и т.д.

№110. Особенности светового и звукового восприятия. Закон Вебера-Фехнера.

Психофизический закон Вебера-Фехнера. Если увеличение раздражения в геометрической прогрессии, то ощущение этого раздражения увеличивает в арифметической прогрессии.

Если I (интенсивность звука) принимает ряд последовательных значений аI 0 ; a 2 I 0 ; a 3 I 0 , то соответствующим ощущением – E 0 ; 2E 0 ; 3E 0 … a – коэффициент, а больше 1.

Другими словами, громкость звука пропорциональна логарифму интенсивности звука. При действии 2-х звуковых раздражителей I0 и I (I0 – порок слышимости)

E=k*lg(I/ I); k - коэффициент пропорциональности.

Рецепция Звука:

Характеризуется:

1. Частотой

2.Амплитудой

3. Спектром

Продольные акустические давление в определенном диапазоне частот.

Абсолютный порог слышимости – I тип звука, который улавливается ухом.

I0=10-12 Вт/м2 – на частоте измеряется в кГц

Коэффициент избирательности равен 10-10.

Ушная раковина

Наружный слуховой проход

Барабанная перепонка

Рецепция света:

Рецепция света – фоторецепторы

1.Колбочки – реализация цветового зрения. Принцип действия такой жжет как и у палочек.

2. Палочки – реализация сумеречного зрения. Сетчатка – многослойное образование, толстое, есть сосудистая оболочка и т.д. Рецепторы находятся на дне в пигментном эпителии.

Квант света попадает в мембране диска. Этим зрительным рецепции и отличается, т.к. в других случаях стимул в самих рецепторах, а в зрительном рецепторе в мембрану органеллы. У палочек рецепторный пигмент – родоксин, у колбочек – йодоксин. Родоксин состоит из ретиноля и оксина, свойство – имеет возможность конформационно перестраиваться.

Нормальное состояние – цис-состояние, отличающееся закругленностью. Поймав квант света происходит перестройка в транс-состояние, при это выделяется некоторое количество энергии. Процесс называется фотоизомерезация.

Происходит изменение свойств мембраны дисков. Рождается внутриклеточный посредник, он передает г/з ц/п воздействия на цитомембрану – происходит воздействие на неё (гиперполяризация) – палочки/колбочки.

Рецепторный потенциал - биопотенциал, возникающий при деполяризации поверхностной мембраны рецептора, обусловленной действием на него раздражителя. Он распределяется по мембране колбочки/палочки и добирается до синапса. Сигнал, прошедший синапс, возбуждает мембрану аксона. Далее он распределяется дальше и идет в зрительный нерв. Гиперполяризация возникает благодаря тому, что прошедший внутренний посредник способствует закрытию натриевых каналов и называется они фотозависимые Na каналы.

Проблемы Цветного зрения:

Дальтонизм (частичная цветовая слепота) наследственное нарушение цветового зрения у людей, заключающееся в неспособности различать некоторые цвета (большей частью красный и зеленый). Объясняется отсутствием в сетчатке глаза колбочек одного или нескольких типов.

№111. Основные характеристики слухового анализатора. Механизмы слуховой рецепции.

Звук – это механические колебания в упругой среде. Имеет объектив характеристики, т.е. не зависит от нашего восприятия.

Характеризуется:

1. Частотой

2.Амплитудой

3. Спектром

Интенсивность – это громкость звука.

Характеристики слухового анализатора:

Продольное акустическое давление - в определенном диапазоне частот.

Абсолютный порог слышимости – тип звука, который улавливается ухом.

I 0 =10 -12 Вт/м2 – на частоте измеряется в кГц

Коэффициент избирательности равен 10 -10 .

Слуховая рецепция. Назначение, строение и работа звуковоспринимающих систем.

1. Наружное ухо (подготовка звуковых колебаний к реакции)

Ушная раковина

Наружный слуховой проход

Барабанная перепонка

Есть слуховые косточки, связки, мышцы (среднее ухо), улитка, баз. мембрана.

По базальной мембране проходят прямая и отраженная волны. Пучность возникает при интерференции этих волн.

В месте залегания волосков – деполяризация доходит до колебания

Раздражение слухового нерва в нижней части БМ и через синапс.

№112. Основные характеристики зрительного анализатора. Механизмы зрительной рецепции.

Зрительный анализатор обладает оптической системой, которая преломляет и фокусирует приходящие световые лучи и в результате этого строится изображение на сетчатке.

Световые лучи – поток этих волн. Их можно рассматривать как волны и как аналоги некоторых частиц = кванты света.

Строение зрительного анализатора.

Адекватный раздражитель это волны определенного диапазона частот. Чувствительность зрительного анализатора – порог светочувствительности 10 -18 Вт

Глаз способен воспринимать световые кванты начиная с 10 кв, при прозрачной атмосфере можно увидеть свечу на расстоянии от 1-3 км. Коэффициент избирательности высокий 10 -14 .

Частотная характеристика.(400 – 750 Нм). Амплитудная характеристика - Эта логарифмическая зависимость выполняется в пределах 100 кратного измерения стимула.

№113. Физические факторы, имеющие экологическую значимость. Уровни естественного фона.

Экология – это условия окружающей среды, в которых находится биосистема.

Физические экологические факторы (по происхождению):

Геофизические →метеорологические→Земные

Космические: солнечные, космические

Антропогенные

Физические экологические факторы (по физ.сущности):

· магнитные поля (силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения.)

· гравитационные поля (физическое поле, через которое осуществляется гравитационное взаимодействие (Гравитация -универсальное фундаментальное взаимодействие между всеми материальными телами)

· электрические поля →ЭМ: радиоизлучение, телевизионный диапазон, локаторы, УФ облучение (на ДНК кожное облучение)

2. вибрация (механическиеколебания.)

3. радиация

· инфразвук (упругие волны, аналогичные звуковым, но с частотами ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвуковой области принимают частоты 16-25 Гц)

· ультразвук (упругие звуковые колебания высокой частоты)

4. звуковые факторы

5. шумовые факторы

________________________________________________________________________________________________________

№114. Составляющие величины естественного фона. Примеры антропогенного изменения фоновых значений физических факторов.

Фон – усредненная величина, характеризующая количественное значение экологического фактора в данном регионе.

Фон = E ф.(естественный фон) + a×с (антропогенное состояние)

Р ф.= E ф. (излучение земных пород, космическое излучение радона) +a×с (возникает благодаря испытаниям яд. оружия)

М ф. = Е ф. (геомагнитное поле, космическое составляющее магнитного поля от естественных влияний) + a×с (электротранспорт, бытовая техника, мед. исследования)

Дополнительно. Изменения леса. Каждый участок леса подвергался раньше или подвергается сейчас определенным видам антропогенного воздействия - даже в том случае, если такое воздействие не может быть прямо обнаружено и измерено. Характерными примерами таких повсеместно распространенных видов антропогенных воздействий являются глобальное загрязнение атмосферы, изменения численности видов охотничье-промысловых животных или изменения частоты лесных пожаров в результате изменения плотности и образа жизни населения в лесных регионах.

_______________________________________________________________________________________

№115. Значение радиационного фона для здоровья человека.

Радиационное излучение – один из наиболее изученных и сильных по воздействию на живые системы биофизических факторов. За этим термином прячется спектр разнообразных по природе и по эффекту излучений.

Одна из опасностей радиоактивного излучения связана с тем, что у человека нет к нему рецепторов. Человеческий организм очень чувствителен к радиоактивным поражениям. Радиоактивное излучение в результате воздействий на клеточном и субклеточном уровне вызывает появление большого количества свободных радикалов (они вредоносны).

Возникает поражение системы крови, общее название – лучевая болезнь.

Радиопротекторы в какой-то степени понижают эффекты радиационного излучения.

Проникающая способность:

От мм для α

До см для β

Для нейротропного излучения до полного проникновения

_______________________________________________________________________________________

№116. Геомагнитное поле. Природа, биотропные характеристики, роль в жизнедеятельности биосистем.

Магнитное поле Земли (геомагнитное поле) - магнитное поле, генерируемое внутриземными источниками.

Строение и характеристики магнитного поля Земли

На небольшом удалении от поверхности Земли, порядка трёх её радиусов, магнитные силовые линии имеют диполеподобное расположение. Эта область называется плазмосферой Земли.

По мере удаления от поверхности Земли усиливается воздействие солнечного ветра: со стороны Солнца геомагнитное поле сжимается, а с противоположной, ночной стороны, оно вытягивается в длинный «хвост».

Параметры поля

Точки Земли, в которых напряжённость магнитного поля имеет вертикальное направление, называют магнитными полюсами. Таких точек на Земле две: северный магнитный полюс и южный магнитный полюс.

Прямая, проходящая через магнитные полюсы, называется магнитной осью Земли. Окружность большого круга в плоскости, которая перпендикулярна к магнитной оси, называется магнитным экватором. Напряжённость магнитного поля в точках магнитного экватора имеет приблизительно горизонтальное направление.

Магнитные поля в свободном состоянии – 0,4 Э (Эрстед)

Напряжённость поля на поверхности Земли сильно зависит от географического положения. Напряжённость магнитного поля на магнитном экваторе около 0,34 э (Эрстед), у магнитных полюсов около 0,66 э. В некоторых районах (в так называемых районах магнитных аномалий) напряжённость резко возрастает.

Для магнитного поля Земли характерны возмущения, называемые геомагнитными пульсациями вследствие возбуждения гидромагнитных волн в магнитосфере Земли; частотный диапазон пульсаций простирается от миллигерц до одного килогерца.

Магнитные поля в обычной жизни имеют небольшую интенсивность. Они обладают высокой проникающей способностью. В результате проведения исследований магнитного поля – выявился биотропный фактор.

Магнитотерапия – воздействие в качестве магнитного фактора.

Магнитная буря оказывает негативное воздействие.

_______________________________________________________________________________________

№117. Возможные механизмы влияния геомагнитного поля на организм.

1) Если сильно заряженные частицы есть в веществе – происходит изменение траектории движения зарядов

2) Эффект Зимана: Под действием Магнитного Поля электронные уровни атома расщепляются на подуровни; слабые Магнитные Поля вызывают этот эффект у тех ионов, которые участвуют в метаболизме.

_______________________________________________________________________________________