Постоянную степень окисления 3. Небольшой тест на тему "Степень окисления"

Задача по определению степени окисления может оказаться как простой формальностью, так и сложной головоломкой. В первую очередь, это будет зависеть от формулы химического соединения, а также наличия элементарных знаний по химии и математике.

Зная основные правила и алгоритм последовательно-логичных действий, о которых пойдет речь в данной статье, при решении задач подобного типа, каждый с легкостью сможет справиться с этим заданием. А потренировавшись и научившись определять степени окисления разноплановых химических соединений, можно смело браться за уравнивание сложных окислительно-восстановительных реакций методом составления электронного баланса.

Понятие степени окисления

Чтобы научиться определять степень окисления, для начала необходимо разобраться, что это понятие означает?

  • Степень окисления применяют при записи в окислительно-восстановительных реакциях, когда происходит передача электронов от атома к атому.
  • Степень окисления фиксирует количество перенесенных электронов, обозначая условный заряд атома.
  • Степень окисления и валентность зачастую тождественны.

Данное обозначение пишется сверху химического элемента, в его правом углу, и представляет собой целое число со знаком «+» или «-». Нулевое значение степени окисления знака не несет.

Правила определения степени окисления

Рассмотрим основные каноны определения степени окисления:

  • Простые элементарные вещества, то есть те, которые состоят из одного вида атомов, всегда будут иметь нулевую степень окисления. Например, Na0, H02, P04
  • Существует ряд атомов, имеющих всегда одну, постоянную, степень окисления. Приведенные в таблице значения лучше запомнить.
  • Как видно, исключение бывает лишь у водорода в соединении с металлами, где он приобретает не свойственную ему степень окисления «-1».
  • Кислород также принимает степень окисления «+2» в химическом соединении с фтором и «-1» в составах перекисей, надперекисей или озонидов, где атомы кислорода соединены друг с другом.


  • Ионы металлов имеют несколько значений степени окисления (причем только положительные), поэтому ее определяют по соседним элементам в соединении. Например, в FeCl3, хлор имеет степень окисления «-1», у него 3 атома, значит умножаем -1 на 3, получаем «-3». Чтобы в сумме степеней окисления соединения получась «0», железо должно иметь степень окисления «+3». В формуле FeCl2, железо, соответственно, изменит свою степень на «+2».
  • Математически суммируя степени окисления всех атомов в формуле (с учетом знаков), всегда должно получаться нулевое значение. Например, в соляной кислоте H+1Cl-1 (+1 и -1 = 0), а в сернистой кислоте H2+1S+4O3-2(+1 * 2 = +2 у водорода,+4 у серы и -2 * 3 = – 6 у кислорода; в сумме +6 и -6 дают 0).
  • Степень окисления одноатомного иона будет равна его заряду. Например: Na+, Ca+2.
  • Наивысшая степень окисления, как правило, соотносится с номером группы в периодической системе Д.И.Менделеева.


Алгоритм действий определения степени окисления

Порядок нахождения степени окисления не сложен, но требует внимания и выполнения определенных действий.

Задача: расставить степени окисления в соединении KMnO4

  • Первый элемент – калий, имеет постоянную степень окисления «+1».
    Для проверки можно посмотреть в периодическую систему, где калий находится в 1 группе элементов.
  • Из оставшихся двух элементов, кислород, как правило, принимает степень окисления «-2».
  • Получаем следующую формулу: К+1MnхO4-2. Остается определить степень окисления марганца.
    Итак, х – неизвестная нам степень окисления марганца. Теперь важно обратить внимание на количество атомов в соединении.
    Количество атомов калия – 1, марганца – 1, кислорода – 4.
    С учетом электронейтральности молекулы, когда общий (суммарный) заряд равен нулю,

1*(+1) + 1*(х) + 4(-2) = 0,
+1+1х+(-8) = 0,
-7+1х = 0,
(при переносе меняем знак)
1х = +7, х = +7

Таким образом, степень окисления марганца в соединении равна «+7».

Задача: расставить степени окисления в соединении Fe2O3.

  • Кислород, как известно, имеет степень окисления «-2» и выступает окислителем. С учетом количества атомов (3), в сумме у кислорода получается значение «-6» (-2*3= -6), т.е. умножаем степень окисления на количество атомов.
  • Чтобы уравновесить формулу и привести к нулю, 2 атома железа будут иметь степень окисления «+3» (2*+3=+6).
  • В сумме получаем ноль (-6 и +6 = 0).

Задача: расставить степени окисления в соединении Al(NO3)3.

  • Атом алюминия – один и имеет постоянную степень окисления «+3».
  • Атомов кислорода в молекуле – 9 (3*3), степень окисления кислорода, как известно «-2», значит, умножая эти значения, получаем «-18».
  • Осталось уровнять отрицательные и положительные значения, определив таким образом степень окисления азота. -18 и +3, не хватает + 15. А учитывая, что имеется 3 атома азота, легко определить его степень окисления: 15 делим на 3 и получаем 5.
  • Степень окисления азота «+5», а формула будет иметь вид: Al+3(N+5O-23)3
  • Если сложно таким способом определять искомое значение, можно составлять и решать уравнения:

1*(+3) + 3х + 9*(-2) = 0.
+3+3х-18=0
3х=15
х=5


Итак, степень окисления – достаточно важное понятие в химии, символизирующее состояние атомов в молекуле.
Без знания определенных положений или основ, позволяющих правильно определять степень окисления, невозможно справиться с выполнением этой задачи. Следовательно, вывод один: досконально ознакомиться и изучить правила нахождения степени окисления, четко и лаконично представленные в статье, и смело двигаться дальше по нелегкой стезе химических премудростей.

Выберите рубрику Книги Математика Физика Контроль и управления доступом Пожарная безопасность Полезное Поставщики оборудования Cредства измерений (КИП) Измерение влажности — поставщики в РФ. Измерение давления. Измерение расходов. Расходомеры. Измерение температуры Измерение уровней. Уровнемеры. Бестраншейные технологии Канализационные системы. Поставщики насосов в РФ. Ремонт насосов. Трубопроводная арматура. Затворы поворотные (дисковые затворы). Обратные клапаны. Регулирующая арматура. Фильтры сетчатые, грязевики, магнито-механические фильтры. Шаровые краны. Трубы и элементы трубопроводов. Уплотнения резьб, фланцев и т.д. Электродвигатели, электроприводы… Руководство Алфавиты, номиналы, единицы, коды… Алфавиты, в т.ч. греческий и латинский. Символы. Коды. Альфа, бета, гамма, дельта, эпсилон… Номиналы электрических сетей. Перевод единиц измерения Децибел. Сон. Фон. Единицы измерения чего? Единицы измерения давления и вакуума. Перевод единиц измерения давления и вакуума. Единицы измерения длины. Перевод единиц измерения длины (линейного размера, расстояний). Единицы измерения объема. Перевод единиц измерения объема. Единицы измерения плотности. Перевод единиц измерения плотности. Единицы измерения площади. Перевод единиц измерения площади. Единицы измерения твердости. Перевод единиц измерения твердости. Единицы измерения температуры. Перевод единиц температур в шкалах Кельвина (Kelvin) / Цельсия (Celsius) / Фаренгейта (Fahrenheit) / Ранкина (Rankine) / Делисле (Delisle) / Ньютона (Newton) / Реамюрa Единицы измерения углов ("угловых размеров"). Перевод единиц измерения угловой скорости и углового ускорения. Стандартные ошибки измерений Газы различные как рабочие среды. Азот N2 (хладагент R728) Аммиак (холодильный агент R717). Антифризы. Водород H^2 (хладагент R702) Водяной пар. Воздух (Атмосфера) Газ природный — натуральный газ. Биогаз — канализационный газ. Сжиженный газ. ШФЛУ. LNG. Пропан-бутан. Кислород O2 (хладагент R732) Масла и смазки Метан CH4 (хладагент R50) Свойства воды. Угарный газ CO. Монооксид углерода. Углекислый газ CO2. (Холодильный агент R744). Хлор Cl2 Хлороводород HCl, он же — Cоляная кислота. Холодильные агенты (хладагенты). Хладагент (холодильный агент) R11 — Фтортрихлорметан (CFCI3) Хладагент (Холодильный агент) R12 — Дифтордихлорметан (CF2CCl2) Хладагент (Холодильный агент) R125 — Пентафторэтан (CF2HCF3). Хладагент (Холодильный агент) R134а — 1,1,1,2-Тетрафторэтан (CF3CFH2). Хладагент (Холодильный агент) R22 — Дифторхлорметан (CF2ClH) Хладагент (Холодильный агент) R32 — Дифторметан (CH2F2). Хладагент (Холодильный агент) R407С — R-32 (23%)/ R-125 (25%)/ R-134a (52%)/ Проценты по массе. другие Материалы — тепловые свойства Абразивы — зернистость, мелкость, шлифовальное оборудование. Грунты, земля, песок и другие породы. Показатели разрыхления, усадки и плотности грунтов и пород. Усадка и разрыхление, нагрузки. Углы откоса, отвала. Высоты уступов, отвалов. Древесина. Пиломатериалы. Лесоматериалы. Бревна. Дрова… Керамика. Клеи и клеевые соединения Лед и снег (водяной лед) Металлы Алюминий и сплавы алюминия Медь, бронзы и латуни Бронза Латунь Медь (и классификация медных сплавов) Никель и сплавы Соответствие марок сплавов Стали и сплавы Cправочные таблицы весов металлопроката и труб. +/-5% Вес трубы. Вес металла. Механические свойства сталей. Чугун Минералы. Асбест. Продукты питания и пищевое сырье. Свойства и пр. Ссылка на другой раздел проекта. Резины, пластики, эластомеры, полимеры. Подробное описание Эластомеров PU, ТPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE модифицированный), Сопротивление материалов. Сопромат. Строительные материалы. Физические, механические и теплотехнические свойства. Бетон. Бетонный раствор. Раствор. Строительная арматура. Стальная и прочая. Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость. Уплотнительные материалы — герметики соединений. PTFE (фторопласт-4) и производные материалы. Лента ФУМ. Анаэробные клеи Герметики невысыхающие (незастывающие). Герметики силиконовые (кремнийорганические). Графит, асбест, парониты и производные материалы Паронит. Терморасширенный графит (ТРГ, ТМГ), композиции. Свойства. Применение. Производство. Лен сантехнический Уплотнители резиновых эластомеров Утеплители и теплоизоляционные материалы. (ссылка на раздел проекта) Инженерные приемы и понятия Взрывозащита. Защита от воздействия окружающей среды. Коррозия. Климатические исполнения (Таблицы совместимости материалов) Классы давления, температуры, герметичности Падение (потеря) давления. — Инженерное понятие. Противопожарная защита. Пожары. Теория автоматического управления (регулирования). ТАУ Математический справочник Арифметическая, Геометрическая прогрессии и суммы некоторых числовых рядов. Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д. Площади неправильных фигур, объемы неправильных тел. Средняя величина сигнала. Формулы и способы расчета площади. Графики. Построение графиков. Чтение графиков. Интегральное и дифференциальное исчисление. Табличные производные и интегралы. Таблица производных. Таблица интегралов. Таблица первообразных. Найти производную. Найти интеграл. Диффуры. Комплексные числа. Мнимая единица. Линейная алгебра. (Вектора, матрицы) Математика для самых маленьких. Детский сад — 7 класс. Математическая логика. Решение уравнений. Квадратные и биквадратные уравнения. Формулы. Методы. Решение дифференциальных уравнений Примеры решений обыкновенных дифференциальных уравнений порядка выше первого. Примеры решений простейших = решаемых аналитически обыкновенных дифференциальных уравнений первого порядка. Системы координат. Прямоугольная декартова, полярная, цилиндрическая и сферическая. Двухмерные и трехмерные. Системы счисления. Числа и цифры (действительные, комплексные, ….). Таблицы систем счисления. Степенные ряды Тейлора, Маклорена (=Макларена) и периодический ряд Фурье. Разложение функций в ряды. Таблицы логарифмов и основные формулы Таблицы численных значений Таблицы Брадиса. Теория вероятностей и статистика Тригонометрические функции, формулы и графики. sin, cos, tg, ctg….Значения тригонометрических функций. Формулы приведения тригонометрических функций. Тригонометрические тождества. Численные методы Оборудование — стандарты, размеры Бытовая техника, домашнее оборудование. Водосточные и водосливные системы. Емкости, баки, резервуары, танки. КИПиА Контрольно-измерительные приборы и автоматика. Измерение температуры. Конвейеры, ленточные транспортеры. Контейнеры (ссылка) Крепеж. Лабораторное оборудование. Насосы и насосные станции Насосы для жидкостей и пульп. Инженерный жаргон. Словарик. Просеивание. Фильтрация. Сепарация частиц через сетки и сита. Прочность примерная веревок, тросов, шнуров, канатов из различных пластиков. Резинотехнические изделия. Сочленения и присоединения. Диаметры условные, номинальные, Ду, DN, NPS и NB. Метрические и дюймовые диаметры. SDR. Шпонки и шпоночные пазы. Стандарты коммуникации. Сигналы в системах автоматизации (КИПиА) Аналоговые входные и выходные сигналы приборов, датчиков, расходомеров и устройств автоматизации. Интерфейсы подключения. Протоколы связи (коммуникации) Телефонная связь. Трубопроводная арматура. Краны, клапаны, задвижки…. Строительные длины. Фланцы и резьбы. Стандарты. Присоединительные размеры. Резьбы. Обозначения, размеры, использование, типы… (справочная ссылка) Соединения ("гигиенические", "асептические") трубопроводов в пищевой, молочной и фармацевтической промышленности. Трубы, трубопроводы. Диаметры труб и другие характеристики. Выбор диаметра трубопровода. Скорости потока. Расходы. Прочность. Таблицы выбора, Падение давления. Трубы медные. Диаметры труб и другие характеристики. Трубы поливинилхлоридные (ПВХ). Диаметры труб и другие характеристики. Трубы полиэтиленовые. Диаметры труб и другие характеристики. Трубы полиэтиленовые ПНД. Диаметры труб и другие характеристики. Трубы стальные (в т.ч. нержавеющие). Диаметры труб и другие характеристики. Труба стальная. Труба нержавеющая. Трубы из нержавеющей стали. Диаметры труб и другие характеристики. Труба нержавеющая. Трубы из углеродистой стали. Диаметры труб и другие характеристики. Труба стальная. Фитинги. Фланцы по ГОСТ, DIN (EN 1092-1) и ANSI (ASME). Соединение фланцев. Фланцевые соединения. Фланцевое соединение. Элементы трубопроводов. Электрические лампы Электрические разъемы и провода (кабели) Электродвигатели. Электромоторы. Электрокоммутационные устройства. (Ссылка на раздел) Стандарты личной жизни инженеров География для инженеров. Расстояния, маршруты, карты….. Инженеры в быту. Семья, дети, отдых, одежда и жилье. Детям инженеров. Инженеры в офисах. Инженеры и другие люди. Социализация инженеров. Курьезы. Отдыхающие инженеры. Это нас потрясло. Инженеры и еда. Рецепты, полезности. Трюки для ресторанов. Международная торговля для инженеров. Учимся думать барыжным образом. Транспорт и путешествия. Личные автомобили, велосипеды…. Физика и химия человека. Экономика для инженеров. Бормотология финансистов — человеческим языком. Технологические понятия и чертежи Бумага писчая, чертежная, офисная и конверты. Стандартные размеры фотографий. Вентиляция и кондиционирование. Водоснабжение и канализация Горячее водоснабжение (ГВС). Питьевое водоснабжение Сточная вода. Холодное водоснабжение Гальваническая промышленность Охлаждение Паровые линии / системы. Конденсатные линии / системы. Паропроводы. Конденсатопроводы. Пищевая промышленность Поставка природного газа Сварочные металлы Символы и обозначения оборудования на чертежах и схемах. Условные графические изображения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения, согласно ANSI/ASHRAE Standard 134-2005. Стерилизация оборудования и материалов Теплоснабжение Электронная промышленность Электроснабжение Физический справочник Алфавиты. Принятые обозначения. Основные физические константы. Влажность абсолютная, относительная и удельная. Влажность воздуха. Психрометрические таблицы. Диаграммы Рамзина. Время Вязкость, Число Рейнольдса (Re). Единицы измерения вязкости. Газы. Свойства газов. Индивидуальные газовые постоянные. Давление и Вакуум Вакуум Длина, расстояние, линейный размер Звук. Ультразвук. Коэффициенты звукопоглощения (ссылка на другой раздел) Климат. Климатические данные. Природные данные. СНиП 23-01-99. Строительная климатология. (Статистика климатических данных) СНИП 23-01-99 .Таблица 3 — Средняя месячная и годовая температура воздуха, °С. Бывший СССР. СНИП 23-01-99 Таблица 1. Климатические параметры холодного периода года. РФ. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. Бывший СССР. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. РФ. СНИП 23-01-99 Таблица 3. Средняя месячная и годовая температура воздуха, °С. РФ. СНиП 23-01-99. Таблица 5а* — Среднее месячное и годовое парциальное давление водяного пара, гПа = 10^2 Па. РФ. СНиП 23-01-99. Таблица 1. Климатические параметры холодного времени года. Бывший СССР. Плотности. Веса. Удельный вес. Насыпная плотность. Поверхностное натяжение. Растворимость. Растворимость газов и твердых веществ. Свет и цвет. Коэффициенты отражения, поглощения и преломления Цветовой алфавит:) — Обозначения (кодировки) цвета (цветов). Свойства криогенных материалов и сред. Таблицы. Коэффициенты трения для различных материалов. Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… дополнительная информация см.: Коэффициенты (показатели) адиабаты. Конвекционный и полный теплообмен. Коэффициенты теплового линейного расширения, теплового объемного расширения. Температуры, кипения, плавления, прочие… Перевод единиц измерения температуры. Воспламеняемость. Температура размягчения. Температуры кипения Температуры плавления Теплопроводность. Коэффициенты теплопроводности. Термодинамика. Удельная теплота парообразования (конденсации). Энтальпия парообразования. Удельная теплота сгорания (теплотворная способность). Потребность в кислороде. Электрические и магнитные величины Дипольные моменты электрические. Диэлектрическая проницаемость. Электрическая постоянная. Длины электромагнитных волн (справочник другого раздела) Напряженности магнитного поля Понятия и формулы для электричества и магнетизма. Электростатика. Пьезоэлектрические модули. Электрическая прочность материалов Электрический ток Электрическое сопротивление и проводимость. Электронные потенциалы Химический справочник "Химический алфавит (словарь)" — названия, сокращения, приставки, обозначения веществ и соединений. Водные растворы и смеси для обработки металлов. Водные растворы для нанесения и удаления металлических покрытий Водные растворы для очистки от нагара (асфальтосмолистого нагара, нагара двигателей внутреннего сгорания…) Водные растворы для пассивирования. Водные растворы для травления — удаления окислов с поверхности Водные растворы для фосфатирования Водные растворы и смеси для химического оксидирования и окрашивания металлов. Водные растворы и смеси для химического полирования Обезжиривающие водные растворы и органические растворители Водородный показатель pH. Таблицы показателей pH. Горение и взрывы. Окисление и восстановление. Классы, категории, обозначения опасности (токсичности) химических веществ Периодическая система химических элементов Д.И.Менделеева. Таблица Менделеева. Плотность органических растворителей (г/см3)в зависимости от температуры. 0-100 °С. Свойства растворов. Константы диссоциации, кислотности, основности. Растворимость. Смеси. Термические константы веществ. Энтальпии. Энтропии. Энергии Гиббса… (ссылка на химический справочник проекта) Электротехника Регуляторы Системы гарантированного и бесперебойного электроснабжения. Системы диспетчеризации и управления Структурированные кабельные системы Центры обработки данных

Таблица. Степени окисления химических элементов.

Таблица. Степени окисления химических элементов.

Степень окисления - это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип. Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе - заряду иона .
  1. Степени окисления металлов в соединениях всегда положительные.
  2. Высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au +3 (I группа), Cu +2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru .
  3. Степени окисления неметаллов зависят от того, с каким атомом он соединён:
    • если с атомом металла, то степень окисления отрицательная;
    • если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов.
  4. Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.
  5. Степени окисления простых веществ равны 0, независимо от того металл это или неметалл.
Таблица: Элементы с неизменными степенями окисления.

Таблица. Степени окисления химических элементов по алфавиту.

Элемент Название Степень окисления
7 N -III, 0, +I, II, III, IV, V
89 Ас
13 Al

Алюминий

95 Am

Америций

0, + II , III, IV

18 Ar
85 At -I, 0, +I, V
56 Ba
4 Be

Бериллий

97 Bk
5 B -III, 0, +III
107 Bh
35 Br -I, 0, +I, V, VII
23 V

0, + II , III, IV, V

83 Bi
1 H -I, 0, +I
74 W

Вольфрам

64 Gd

Гадолиний

31 Ga
72 Hf
2 He
32 Ge

Германий

67 Ho
66 Dy

Диспрозий

105 Db
63 Еu
26 Fe
79 Au
49 In
77 Ir
39 Y
70 Yb

Иттербий

53 I -I, 0, +I, V, VII
48 Cd
19 К
98 Cf

Калифорний

20 Ca
54 Xe

0, + II , IV, VI, VIII

8 O

Кислород

-II, I, 0, +II
27 Co
36 Кr
14 Si -IV, 0, +11, IV
96 Cm
57 La
3 Li
103 Lr

Лоуренсий

71 Lu
12 Mg
25 Mn

Марганец

0, +II, IV, VI, VIII

29 Cu
109 Mt

Мейтнерий

101 Md

Менделевий

42 Mo

Молибден

33 As — III , 0 , +III, V
11 Na
60 Nd
10 Ne
93 Np

Нептуний

0, +III, IV, VI, VII

28 Ni
41 Nb
102 No
50 Sn
76 Os

0, +IV, VI, VIII

46 Pd

Палладий

91 Pa.

Протактиний

61 Pm

Прометий

84 Рo
59 Рг

Празеодим

78 Pt
94 PU

Плутоний

0, +III, IV, V, VI

88 Ra
37 Rb
75 Re
104 Rf

Резерфордий

45 Rh
86 Rn

0, + II , IV, VI, VIII

44 Ru

0, +II, IV, VI, VIII

80 Hg
16 S -II, 0, +IV, VI
47 Ag
51 Sb
21 Sc
34 Se -II, 0,+IV, VI
106 Sg

Сиборгий

62 Sm
38 Sr

Стронций

82 РЬ
81 Тl
73 Ta
52 Te -II, 0, +IV, VI
65 Tb
43 Tc

Технеций

22 Ti

0, + II , III, IV

90 Th
69 Tm
6 C -IV, I, 0, +II, IV
92 U
100 Fm
15 P -III, 0, +I, III, V
87 Fr
9 F -I, 0
108 Hs
17 Cl
24 Cr

0, + II , III , VI

55 Cs
58 Ce
30 Zn
40 Zr

Цирконий

99 ES

Эйнштейний

68 Еr

Таблица. Степени окисления химических элементов по номеру.

Элемент Название Степень окисления
1 H -I, 0, +I
2 He
3 Li
4 Be

Бериллий

5 B -III, 0, +III
6 C -IV, I, 0, +II, IV
7 N -III, 0, +I, II, III, IV, V
8 O

Кислород

-II, I, 0, +II
9 F -I, 0
10 Ne
11 Na
12 Mg
13 Al

Алюминий

14 Si -IV, 0, +11, IV
15 P -III, 0, +I, III, V
16 S -II, 0, +IV, VI
17 Cl -I, 0, +I, III, IV, V, VI, VII
18 Ar
19 К
20 Ca
21 Sc
22 Ti

0, + II , III, IV

23 V

0, + II , III, IV, V

24 Cr

0, + II , III , VI

25 Mn

Марганец

0, +II, IV, VI, VIII

26 Fe
27 Co
28 Ni
29 Cu
30 Zn
31 Ga
32 Ge

Германий

33 As — III , 0 , +III, V
34 Se -II, 0,+IV, VI
35 Br -I, 0, +I, V, VII
36 Кr
37 Rb
38 Sr

Стронций

39 Y
40 Zr

Цирконий

41 Nb
42 Mo

Молибден

43 Tc

Технеций

44 Ru

0, +II, IV, VI, VIII

45 Rh
46 Pd

Палладий

47 Ag
48 Cd
49 In
50 Sn
51 Sb
52 Te -II, 0, +IV, VI
53 I -I, 0, +I, V, VII
54 Xe

0, + II , IV, VI, VIII

55 Cs
56 Ba
57 La
58 Ce
59 Рг

Празеодим

60 Nd
61 Pm

Прометий

62 Sm
63 Еu
64 Gd

Гадолиний

65 Tb
66 Dy

Диспрозий

67 Ho
68 Еr
69 Tm
70 Yb

Иттербий

71 Lu
72 Hf
73 Ta
74 W

Вольфрам

75 Re
76 Os

0, +IV, VI, VIII

77 Ir
78 Pt
79 Au
80 Hg
81 Тl
82 РЬ
83 Bi
84 Рo
85 At -I, 0, +I, V
86 Rn

0, + II , IV, VI, VIII

87 Fr
88 Ra
89 Ас
90 Th
91 Pa.

Протактиний

92 U
93 Np

Нептуний

0, +III, IV, VI, VII

94 PU

Плутоний

0, +III, IV, V, VI

95 Am

Америций

0, + II , III, IV

96 Cm
97 Bk
98 Cf

Калифорний

99 ES

Эйнштейний

100 Fm
101 Md

Менделевий

102 No
103 Lr

Лоуренсий

104 Rf

Резерфордий

105 Db
106 Sg

Сиборгий

107 Bh
108 Hs
109 Mt

Мейтнерий

Оценка статьи:

В настоящее время описание химии любого элемента начинают с электронной формулы, выделения особых валентных электронов и сведений о степенях окисления, проявляемых элементов в соединениях.

Количество валентных электронов и тип орбиталей, на которых они находятся, определяет степени окисления, проявляемых элементом при образовании соединений .

Степень окисления металла определяется количеством электронов, участвующих в образовании связи с более электроотрицательными элементами (например, с кислородом, галогенами, серой и др.). Будем обозначать степень окисления элемента Х Э . Предельно возможная (максимальная) степень окисления определяется общим числом валентных электронов. При образовании соединения металл может использовать не все свои валентные электроны, в этом случае металл оказывается в некоторой промежуточной степени окисления. При этом для металлов р- и d-блоков, как правило, характерно несколько степеней окисления. Для каждого металла среди промежуточных степеней окисления можно выделить наиболее характерные, т.е. степени окисления, проявляемые металлом в своих распространенных и относительно устойчивых соединениях.

  • Степени окисления, проявляемые s- и р-металлами

    У всех s-элементов есть только одна степень окисления, совпадающая с общим числом валентных электронов, т.е. все s-элементы 1 группы имеют степень окисления +1, а элементы второй группы +2.

    У р-элементов из-за различий в энергии s- и p-орбиталей последнего слоя дифференцируются две степени окисления. Одна степень окисления определяется числом электронов на внешних р-орбиталях, а другая - общим количеством валентных электронов. Только у р-элементов 13 группы устойчивой является одна степень окисления +3, кроме Tl с более устойчивой степенью окисления +1.

    У р-элементов 14 группы есть две степени окисления +2 и +4 .

    У Bi есть две степени окисления +3 и +5 .

    Особая «чувствительность» s-электронов к ядру, приводящая к тому, что при большом заряде ядра s- электроны сильнее им удерживаются, объясняет, почему у р-элементов 6 периода становится устойчивой степень окисления, связанная с потерей только р-электронов. У р-элементов шестого периода устойчивы степени окисления: +1 у Tl, +2 - у Pb и + 3- у Bi.
    В таблице приведены степени окисления, проявляемые металлами s- и р-блоков.

    Степени окисления, проявляемые металлами s- и р-блоков

    периоды ряды Группы
    1 2 13 14 15
    В. e- ns 1 ns 2 ns 2 np 1 ns 2 np 2 ns 2 np 3
    II Li
    +1
    Be
    +2
    III 3 Na
    +1
    Mg
    +2
    Al
    (1), 3
    IV 4 K
    +1
    Ca
    +2
    Ga
    (1), 3
    V 5 Rb
    +1
    Sr
    +2
    In
    (1), 3
    Sn
    2 , 4
    VI 6 Cs
    +1
    Ba
    +2
    Tl
    1 , 3
    Pb
    2 , 4
    Bi
    3 , 5
  • Степени окисления d-металлов

    Только d-элементы 3 и 12 групп имеют по одной степени окисления. У элементов 13 группы она равна общему числу электронов, т.е. +3. У элементов 12 группы d-орбитали полностью заполнены электронами и в образовании химических связей участвуют только два электрона с внешней s-орбитали, поэтому элементы 12 группы имеют одну степень окисления +2.

    Максимальную степень окисления, обусловленную общим количеством электронов, проявляют только d-элементы 3 ¸ 7 групп. А также и Os и Ru, проявляющие степень окисления +8. При движении к концу переходных рядов с ростом числа электронов на d-орбиталях и повышением эффективного заряда ядра самая большая степень окисления становится меньше общего числа валентных электронов.

  • Существуют большие различия между d-элементами четвертого и элементами 5 и 6 периодов .

    Из-за различий в энергии s-электронов 4 слоя и d-электронов 3 слоя все элементы 4 периода, кроме Sc, проявляют степень окисления +2, связанную с потерей двух электронов с внешней ns-орбитали. У многих элементов степень окисления +2 является устойчивой и ее устойчивость увеличивается к концу ряда.

    У d-элементов 4 периода наиболее устойчивыми являются низкие степени окисления +2, +3, +4 .

    При большом заряде ядра s-электроны сильнее удерживаются, различие в энергиях ns- и (n-1)d-орбиталей уменьшается, и это приводит к тому, что у d-элементов 5 и 6 периодов высшие степени окисления в 3 ¸ 7 группах становятся самыми устойчивыми. Вообще, у d-элементов 5 и 6 периодов устойчивы высокие степени окисления больше 4 . Исключение составляют d-элементы 3,11 и 12 групп.

    В приведенных ниже таблицах указаны характерные степени окисления d-металлов, красным цветом выделены наиболее устойчивые. В таблицу не включены степени окисления, проявляемые металлами в редких и неустойчивых соединениях.
    При описании химии любого элемента обязательно указывают характерные для него степени окисления.

  • Валентные электроны и наиболее характерные степени окисления для d-элементов 4 периода

    группа 3 4 5 6 7 8 9 10 11 I2
    Металлы 4 периода 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn

    В
    e-

    3d 1
    4s 2

    3d 2
    4s 2

    3d 3
    4s 2

    3d 5
    4s 1

    3d 5
    4s 2

    3d 6
    4s 2

    3d 7
    4s 2

    3d 8
    4s 2

    3d 10
    4s 1

    3d 10
    4s 2
    Х max 3 4 5 6 7 6 3 (4) 3 (4) 2 (3) 2
    Наиболее
    характерные Х
    3 2, 3,4 2, 3, 4,5 2,3,6 2, 3, 4 6, 7 2, 3, 6 2, 3 2, 3 1, 2 2
    Наиболее
    устойчивые Х
    3 4 4, 5 3 2, 4 2, 3 2 2 2 2
    Х в природных соединениях 3 4 4, 5 3, 6 4, 2, 3 3, 2 2 2 2, 1 2
  • Наиболее характерные степени окисления для d-элементов 5 и 6 периодов

    группа 3 4 5 6 7 8 9 10 11 I2
    Металлы 5 периода 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd
    В e-
    4d 1 5s 2 4d 2 5s 2 4d 4 5s 1 4d 5 5s 1 4d 6 5s 1 4d 7 5s 1 4d 8 5s 1 4d 10 5s 0 4d 10 5 s 1 4d 10 5s 2
    Х max
    3 4 5 6 7 8 6 4 3 2
    Наиболее
    характерные Х
    3 4 5 4, 6 4, 7 4 , 6,7,8 3, 4,5,6 2, 4 1, 2,3 2
    Наиболее
    устойчивые Х
    3 4 5 6 7 4 3 2 1 2
    Х в природных соединениях 3 4 5 4, 6 нет в природе 0 0 0 0, 1 2
    Металлы 6 периода 57 La 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg
    В e-
    5d 1 6s 2 5d 2 6s 2 5d 3 6s 2 5d 4 6s 2 5d 5 6s 2 5d 6 6s 2 5d 7 6s 2 5d 9 6s 1 5d 10 6s 1 5d 10 6s 2
    Х max 3 4 5 6 7 8 6 4 (6) 3 2
    Наиболее
    характерные Х
    3 4 4, 5 4, 5, 6 4 ,5 6,7 4 , 6,7,8 3,4 ,5,6 2 ,4 , 6 1 , 3 2
    Более
    устойчивые Х
    3 4 5 6 7, 4 4 4 4 1 2
    Х в природных соединениях 3 4 5 6 4 0 0 0 0 2

  • Все соединения металлов в положительных степенях окисления способны проявлять окислительные свойства и восстанавливаться. Металлы и получают, восстанавливая соединения металла либо природные, либо предварительно полученные из природных минералов.

    Соединения, содержащие элемент в любой степени окисления, меньшей, чем максимальная, способны окисляться, терять электроны и проявлять восстановительные свойства.

    У соединений, содержащих металл в низкой и неустойчивой степени окисления, выражены восстановительные свойства. Так, например, соединения Ti(+2), V(+2), Cr(+2) восстанавливают воду.

    2VO + 2H 2 O = 2VOOH + H 2

    Вещества, содержащие элемент в высоких и неустойчивых степенях окисления, обычно проявляют сильные окислительные свойства, как например, соединения Mn и Cr в степенях окисления 6 и 7. Сильные окислительные свойства проявляет оксид PbO 2 и соли Bi(+5). У этих элементов высшие степени окисления неустойчивы.

  • все s-элементы 1 группы имеют степень окисления +1,
  • s-элементы второй группы +2.
  • Для р-элементов характерны две степени окисления, исключение составляют элементы 3 группы. Одна степень окисления определяется числом электронов на внешних р-орбиталях, а другая - общим количеством валентных электронов.
    • У р-элементов 13 группы устойчивой является одна степень окисления +3, кроме Tl с более устойчивой степенью окисления +1.
    • У р-элементов 14 группы есть две степени окисления +2 и +4.
    • У Bi есть две степени окисления +3 и +5.
  • Металлы d-блока из-за большого числа валентных электронов проявляют многообразие степеней окисления.
    • Существуют большие различия между d-элементами четвертого и элементами 5 и 6 периодов.
    • Все элементы 4 периода, кроме Sc, проявляют степень окисления +2, связанную с потерей двух электронов с внешней ns-орбитали. У многих элементов степень окисления +2 является устойчивой и ее устойчивость увеличивается к концу ряда.
    • У d-элементов 4 периода более устойчивыми являются низкие степени окисления +2, +3, +4.
    • У d-элементов 5 и 6 периодов устойчивы высокие степени окисления ³ 4. Исключение составляют d-элементы 3,11 и 12 групп.
    • Максимальную степень окисления, обусловленную общим количеством электронов, проявляют только d-элементы 3 ¸ 7 групп, а также Os и Ru, проявляющие степень окисления +8.
    • Характерные степени окисления металлов указаны в таблицах.
    • Степень окисления - это важный стехиометрический параметр, позволяющий записывать химические формулы соединений
    • На степени окисления основывается окислительно-восстановительная классификация соединений. Cтепень окисления оказывается самой важной характеристикой металла при прогнозировании окислительно-восстановительных свойств его соединений.
    • При кислотно-основной классификации оксидов и гидроксидов также опираются на степень окисления металла. Высокие степени окисления > +5 обуславливают кислотные свойства, а степени окисления £ +4, обеспечивают основные свойства.
    • Роль степеней окисления велика в структурировании описания химии элемента, как правило, соединения группируют по степеням окисления.
  • Такой предмет школьной программы как химия вызывает многочисленные затруднения у большинства современных школьников, мало кто может определить степень окисления в соединениях. Наибольшие сложности у школьников, которые изучают то есть учеников основной школы (8-9 классы). Непонимание предмета приводит к возникновению неприязни у школьников к данному предмету.

    Педагоги выделяют целый ряд причин такой «нелюбви» учеников средних и старших классов к химии: нежелание разбираться в сложных химических терминах, неумение пользоваться алгоритмами для рассмотрения конкретного процесса, проблемы с математическими знаниями. Министерством образования РФ были внесены серьезные изменение в содержание предмета. К тому же "урезали" и количество часов на преподавание химии. Это негативно сказалось на качестве знаний по предмету, снижению интереса к изучению дисциплины.

    Какие темы курса химии даются школьникам труднее всего?

    По новой программе в курс учебной дисциплины «Химия» основной школы включено несколько серьезных тем: периодическая таблица элементов Д. И. Менделеева, классы неорганических веществ, ионный обмен. Труднее всего дается восьмиклассникам определение степени окисления оксидов.

    Правила расстановки

    Прежде всего ученики должны знать, что оксиды являются сложными двухэлементными соединениями, в состав которых включен кислород. Обязательным условием принадлежности бинарного соединения к классу оксидов является расположение кислорода вторым в данном соединении.

    Алгоритм для кислотных оксидов

    Для начала заметим, что степени численные выражения валентности элементов. Кислотные оксиды образованы неметаллами либо металлами с валентностью от четырех до семи, вторым в таких оксидах обязательно стоит кислород.

    В оксидах валентность кислорода всегда соответствует двум, определить ее можно по периодической таблице элементов Д. И. Менделеева. Такой типичный неметалл как кислород, находясь в 6 группе главной подгруппы таблицы Менделеева, принимает два электрона, чтобы полностью завершить свой внешний энергетический уровень. Неметаллы в соединениях с кислородом чаще всего проявляют высшую валентность, которая соответствует номеру самой группы. Важно напомнить, что степень окисления химических элементов это показатель, предполагающий положительное (отрицательное) число.

    Неметалл, стоящий в начале формулы, обладает положительной степенью окисления. Неметалл кислород же в оксидах стабилен, его показатель -2. Для того чтобы проверить достоверность расстановки значений в кислотных окислах, придется перемножить все поставленные вами цифры на индексы у конкретного элемента. Расчеты считаются достоверными, если суммарный итог всех плюсов и минусов поставленных степеней получается 0.

    Составление двухэлементных формул

    Степень окисления атомов элементов дает шанс создавать и записывать соединения из двух элементов. При создании формулы, для начала оба символа прописывают рядом, обязательно вторым ставят кислород. Сверху над каждым из записанных знаков прописывают значения степеней окисления, затем между найденными числами находится то число, что будет без какого-либо остатка делиться на обе цифры. Данный показатель необходимо поделить по отдельности на числовое значение степени окисления, получая индексы для первого и второго компонентов двухэлементного вещества. Высшая степень окисления равна численно значению высшей валентности типичного неметалла, идентична номеру группы, где стоит неметалл в ПС.

    Алгоритм постановки числовых значений в основных оксидах

    Подобными соединениями считаются оксиды типичных металлов. Они во всех соединениях имеют показатель степени окисления не более +1 либо +2. Для того чтобы понять, какую будет иметь степень окисления металл, можно воспользоваться периодической системой. У металлов основных подгрупп первой группы, данный параметр всегда постоянный, он аналогичен номеру группы, то есть +1.

    Металлы основной подгруппы второй группы также характеризуются стабильной степенью окисления, в цифровом выражении +2. Степени окисления оксидов в сумме с учетом их индексов (числа) должны давать нуль, поскольку химическая молекула считается нейтральной, лишенной заряда, частицей.

    Расстановка степеней окисления в кислородсодержащих кислотах

    Кислоты представляют собой сложные вещества, состоящими из одного или нескольких атомов водорода, которые связаны с каким-то кислотным остатком. Учитывая, что степени окисления это цифровые показатели, для их вычисления потребуются некоторые математические навыки. Такой показатель для водорода (протона) в кислотах всегда стабилен, составляет +1. Далее можно указать степень окисления для отрицательного иона кислорода, она также стабильная, -2.

    Лишь только после этих действий, можно вычислять степень окисления у центрального компонента формулы. В качестве конкретного образца рассмотрим определение степени окисления элементов в серной кислоте H2SO4. Учитывая, что в молекуле данного сложного вещества содержится два протона водорода, 4 атома кислорода, получаем выражение такого вида +2+X-8=0. Для того чтобы в сумме образовывался ноль, у серы будет степень окисления +6

    Расстановка степеней окисления в солях

    Соли представляют собой сложные соединения, состоящие из ионов металла и одного либо нескольких кислотных остатков. Методика определения степеней окисления у каждого из составных частей в сложной соли такая же, как и в кислородсодержащих кислотах. Учитывая, что степень окисления элементов - это цифровой показатель, важно правильно обозначить степень окисления металла.

    Если металл, образующий соль, располагается в главной подгруппе, его степень окисления будет стабильной, соответствует номеру группы, является положительной величиной. Если же в соли содержится металл подобной подгруппы ПС, проявляющий разные металла можно по кислотному остатку. После того как установлена будет степень окисления металла, ставят (-2), далее вычисляют степень окисления центрального элемента, воспользовавшись химическим уравнением.

    В качестве примера рассмотрим определение степеней окисления у элементов в (средней соли). NaNO3. Соль образована металлом главной подгруппы 1 группы, следовательно, степень окисления натрия будет +1. У кислорода в нитратах степень окисления составляет -2. Для определения численного значения степени окисления составляет уравнение +1+X-6=0. Решая данное уравнение, получаем, что X должен быть +5, это и есть

    Основные термины в ОВР

    Для окислительного, а также восстановительного процесса существуют специальные термины, которые обязаны выучить школьники.

    Степень окисления атома это его непосредственная способность присоединять к себе (отдавать иным) электроны от каких-то ионов или же атомов.

    Окислителем считают нейтральные атомы или заряженные ионы, в ходе химической реакции присоединяющие себе электроны.

    Восстановителем станут незаряженные атомы или заряженные ионы, что в процессе химического взаимодействия теряют собственные электроны.

    Окисление представляется как процедура отдачи электронов.

    Восстановление связано с принятием дополнительных электронов незаряженным атомом или ионом.

    Окислительно-восстановительны процессом характеризуется реакция, в ходе которой обязательно меняется степень окисления атома. Это определение позволяет понять, как можно определить, является ли реакция ОВР.

    Правила разбора ОВР

    Пользуясь данным алгоритмом, можно расставить коэффициенты в любой химической реакции.


    Во многих школьных учебниках и пособиях учат составлять формулы по валентностям, даже для соединений с ионными связями. Для упрощения процедуры составления формул это, на наш взгляд, допустимо. Но нужно понимать, что это не совсем корректно ввиду вышеизложенной причины.

    Более универсальным понятием является понятие о степени окисления. По значениям степеней окисления атомов так же как и по значениям валентности можно составлять химические формулы и записывать формульные единицы.

    Степень окисления - это условный заряд атома в частице (молекуле, ионе, радикале), вычисленный в приближении того, что все связи в частице являются ионными.

    Прежде чем определять степени окисления, необходимо сравнить электроотрицательности связуемых атомов. Атом с большим значением электроотрицательности имеет отрицательную степень окисления, а с меньшим положительную.


    С целью объективного сравнения значений электроотрицательности атомов при расчёте степеней окисления, в 2013 году IUPAC дал рекомендацию использовать шкалу Аллена.

    * Так, например, по шкале Аллена электроотрицательность азота 3,066, а хлора 2,869.

    Проиллюстрируем данное выше определение на примерах. Составим структурную формулу молекулы воды.

    Ковалентные полярные связи O-H обозначены синим цветом.

    Представим, что обе связи являются не ковалентными, а ионными. Если бы они были ионными, то с каждого атома водорода на более электроотрицательный атом кислорода перешло бы по одному электрону. Обозначим эти переходы синими стрелками.

    *В этом примере, стрелка служит для наглядной иллюстрации полного перехода электронов, а не для иллюстрации индуктивного эффекта.

    Легко заметить, что число стрелок показывает количество перешедших электронов, а их направление - направление перехода электронов.

    На атом кислорода направлено две стрелки, это значит, что к атому кислорода переходит два электрона: 0 + (-2) = -2. На атоме кислорода образуется заряд равный -2. Это и есть степень окисления кислорода в молекуле воды.

    С каждого атома водорода уходит по одному электрону: 0 - (-1) = +1. Значит, атомы водорода имеют степень окисления равную +1.

    Сумма степеней окисления всегда равняется общему заряду частицы.

    Например, сумма степеней окисления в молекуле воды равна: +1(2) + (-2) = 0. Молекула - электронейтральная частица.

    Если мы вычисляем степени окисления в ионе, то сумма степеней окисления, соответственно, равна его заряду.

    Значение степени окисления принято указывать в верхнем правом углу от символа элемента. Причём, знак пишут впереди числа . Если знак стоит после числа - то это заряд иона.


    Например, S -2 - атом серы в степени окисления -2, S 2- - анион серы с зарядом -2.

    S +6 O -2 4 2- - значения степеней окисления атомов в сульфат-анионе (заряд иона выделен зелёным цветом).

    Теперь рассмотрим случай, когда соединение имеет смешанные связи: Na 2 SO 4 . Связь между сульфат-анионом и катионами натрия - ионная, связи между атомом серы и атомами кислорода в сульфат-ионе - ковалентные полярные. Запишем графическую формулу сульфата натрия, а стрелками укажем направление перехода электронов.

    *Структурная формула отображает порядок ковалентных связей в частице (молекуле, ионе, радикале). Структурные формулы применяют только для частиц с ковалентными связями. Для частиц с ионными связями понятие структурной формулы не имеет смысла. Если в частице имеются ионные связи, то применяют графическую формулу.

    Видим, что от центрального атома серы уходит шесть электронов, значит степень окисления серы 0 - (-6) = +6.

    Концевые атомы кислорода принимают по два электрона, значит их степени окисления 0 + (-2) = -2

    Мостиковые атомы кислорода принимают по два электрона, их степень окисления равна -2.

    Определить степени окисления возможно и по структурно-графической формуле, где черточками указывают ковалентные связи, а у ионов указывают заряд.

    В этой формуле мостиковые атомы кислорода уже имеют единичные отрицательные заряды и к ним дополнительно приходит по электрону от атома серы -1 + (-1) = -2, значит их степени окисления равны -2.


    Степень окисления ионов натрия равна их заряду, а т.е. +1.

    Определим степени окисления элементов в надпероксиде (супероксиде) калия. Для этого составим графическую формулу супероксида калия, стрелочкой покажем перераспределение электронов. Связь O-O является ковалентной неполярной, поэтому в ней перераспределение электронов не указывается.

    * Надпероксид-анион является ион-радикалом. Формальный заряд одного атома кислорода равен -1, а другого, с неспаренным электроном, 0.

    Видим, что степень окисления калия равна +1. Степень окисления атома кислорода, записанного в формуле напротив калия, равна -1. Степень окисления второго атома кислорода равна 0.

    Точно также можно определить степени окисления и по структурно-графической формуле.

    В кружочках указаны формальные заряды иона калия и одного из атомов кислорода. При этом значения формальных зарядов совпадают со значениями степеней окисления.

    Так как оба атома кислорода в надпероксид-анионе имеют разные значения степени окисления, то можно вычислить средне-арифметическую степень окисления кислорода.


    Она будет равна / 2 = - 1/2 = -0,5.

    Значения среднеарифметических степеней окисления обычно указывают в брутто-формулах или формульных единицах, чтобы показать что сумма степеней окисления равна общему заряду системы.

    Для случая с надпероксидом: +1 + 2(-0,5) = 0

    Легко определить степени окисления используя электронно-точечные формулы, в которых указывают точками неподеленные электронные пары и электроны ковалентных связей.

    Кислород - элемент VIА - группы, следовательно в его атоме 6 валентных электронов. Представим, что в молекуле воды связи ионные, в этом случае атом кислорода получил бы октет электронов.

    Степень окисления кислорода соответственно равна: 6 - 8 = -2.

    А атомов водорода: 1 - 0 = +1

    Умение определять степени окисления по графическим формулам бесценно для понимания сущности этого понятия, так же это умение потребуется в курсе органической химии. Если же мы имеем дело с неорганическими веществами, то необходимо уметь определять степени окисления по молекулярным формулам и формульным единицам.

    Для этого прежде всего нужно понять, что степени окисления бывают постоянными и переменными. Элементы, проявляющие постоянную степень окисления необходимо запомнить.

    Любой химический элемент характеризуется высшей и низшей степенями окисления.

    Низшая степень окисления - это заряд, который приобретает атом в результате приёма максимального количества электронов на внешний электронный слой.


    Ввиду этого, низшая степень окисления имеет отрицательное значение, за исключением металлов, атомы которых электроны никогда не принимают ввиду низких значений электроотрицательности. Металлы имеют низшую степень окисления равную 0.


    Большинство неметаллов главных подгрупп старается заполнить свой внешний электронный слой до восьми электронов, после этого атом приобретает устойчивую конфигурацию (правило октета ). Поэтому, чтобы определить низшую степень окисления, необходимо понять сколько атому не хватает валентных электронов до октета.

    Например, азот - элемент VА группы, это значит, что в атоме азота пять валентных электронов. До октета атому азота не хватает трёх электронов. Значит низшая степень окисления азота равна: 0 + (-3) = -3