Как образуется сверхновая звезда. Взрыв сверхновой звезды

Вспышка сверхновой звезды (обозначается SN) - явление несравненно более крупного масштаба, чем вспышка новой. Когда в одной из звездных систем мы наблюдаем появление сверхновой, блеск этой одной звезды оказывается подчас того же порядка, что интегральный блеск всей звездной системы. Так, вспыхнувшая в 1885 г. близ центра туманности Андромеды звезда достигла блеска , тогда как интегральный блеск туманности равен , т. е. световой поток от сверхновой всего в четыре раза с небольшим уступает потоку от туманности. В двух случаях блеск сверхновой оказывался больше блеска галактики, в которой сверхновая появлялась. Абсолютные звездные величины сверхновых в максимуме близки к что на , т. е. в 600 раз ярче, чем абсолютная звездная величина обычной новой в максимальном блеске. Отдельные сверхновые достигают в максимуме , что в десять миллиардов раз превышает светимость Солнца.

В нашей Галактике за последнее тысячелетие достоверно наблюдались три сверхновые звезды: в 1054 г. (в Тельце), в 1572 г. (в Кассиопее), в 1604 г. (в Змееносце). По-видимому, прошла незамеченной также вспышка сверхновой в Кассиопее около 1670 г., от которой сейчас осталась система разлетающихся газовых волокон и мощное радиоизлучение (Cas А). В некоторых галактиках на протяжении 40 лет вспыхивало три и даже четыре сверхновые (в туманностях NGC 5236 и 6946). В среднем, в каждой галактике вспыхивает одна сверхновая за 200 лет, а у названных двух галактик этот интервал снижается до 8 лет! Международное сотрудничество за четыре года (1957-1961) привело к открытию сорока двух сверхновых. Общее число наблюдавшихся сверхновых превышает в настоящее время 500.

По особенностям изменения блеска сверхновые распадаются на два типа - I и II (рис. 129); возможно, что существует еще III тип, объединяющий сверхновые с наименьшей светимостью.

Сверхновые I типа отличаются быстротечным максимумом (около недели), после чего в течение 20-30 дней блеск падает со скоростью за одни сутки. Затем падение замедляется и далее, вплоть до наступления невидимости звезды, протекает с постоянной скоростью за сутки. Светимость звезды убывает при этом экспоненциально, вдвое за каждые 55 суток. Например, Сверхновая 1054 г. в Тельце достигла такого блеска , что была видна днем в течение почти месяца, а ее видимость невооруженным глазом продолжалась два года. В максимуме блеска абсолютная звездная величина сверхновых I типа достигает в среднем , а амплитуда от максимума до минимального блеска после вспышки .

Сверхновые II типа имеют меньшую светимость: в максимуме , амплитуда неизвестна. Вблизи максимума блеск несколько задерживается, но спустя 100 дней после максимума падает гораздо быстрее, чем у сверхновых I типа, а именно на за 20 дней.

Сверхновые звезды вспыхивают обычно на периферии галактик.

Сверхновые I типа встречаются в галактиках любой формы, а II типа - только в спиральных. Те и другие в спиральных галактиках бывают чаще всего вблизи экваториальной плоскости, предпочтительно в ветвях спиралей, и, вероятно, избегают центр галактики. Скорее всего они принадлежат к плоской составляющей (I типу населения).

Спектры сверхновых I типа ничем не похожи на спектры новых звезд. Их удалось расшифровать лишь после того, как отказались от идеи весьма широких эмиссионных полос, а темные промежутки были восприняты как весьма широкие абсорбционные полосы, сильно смещенные в фиолетовую сторону на величину ДХ, соответствующую скоростям приближения от 5000 до 20 000 км/с.

Рис. 129. Кривые фотографического блеска сверхновых звезд I и II типа. Вверху - изменение блеска двух сверхновых I типа, вспыхнувших в 1937 г. почти одновременно в туманностях IС 4182 и NGC 1003. На оси абсцисс отложены юлианские дни. Внизу - синтетическая кривая блеска трех сверхновых II типа, полученная соответствующим сдвигом индивидуальных кривых блеска вдоль оси звездных величин (ординаты, оставленной неразмеченной). Прерывистая кривая изображает изменение блеска сверхновой I типа. На оси абсцисс отложены дни от произвольного начала

Такими оказываются скорости расширения оболочек сверхновых! Понятно, что до максимума и первое время после максимума спектр сверхновой сходен со спектром сверхгиганта, цветовая температура которого около 10 000 К или выше (ультрафиолетовый избыток около );

вскоре после максимума температура излучения падает до 5-6 тыс. Кельвинов. Но спектр остается богатым линиями ионизованных металлов, прежде всего CaII (как ультрафиолетовый дублет, так и инфракрасный триплет), хорошо представлены линии гелия (HeI) и очень выделяются многочисленные линии азота (NI), а линии водорода идентифицируются с большой неуверенностью. Конечно, в отдельных фазах вспышки в спектре встречаются и эмиссионные линии, однако недолговечные. Очень большая ширина абсорбционных линий объясняется большой дисперсией скоростей в выброшенных газовых оболочках.

Спектры сверхновых II типа сходны со спектрами обыкновенных новых звезд: широкие эмиссионные линии, окаймленные с фиолетовой стороны линиями поглощения, которые имеют ту же ширину, что и эмиссии. Характерно наличие весьма заметных бальмеровских линий водорода, светлых и темных. Большая ширина абсорбционных линий, образующихся в движущейся оболочке, в той ее части, которая лежит между звездой и наблюдателем, свидетельствует как о дисперсии скоростей в оболочке, так и об ее огромных размерах. Температурные изменения у сверхновых II типа сходны с тем, что происходит у I типа, и скорости расширения доходят до 15 000 км/с.

Между типами сверхновых и их расположением в Галактике или частотой встречаемости в галактиках разных типов существует корреляция, хотя и не очень строгая. Сверхновые I типа встречаются предпочтительнее среди звездного населения сферической составляющей и, в частности, в эллиптических галактиках, а сверхновые II типа, наоборот - среди населения диска, в спиральных и редко - неправильных туманностях. Впрочем, все сверхновые, наблюдавшиеся в Большом Магеллановом Облаке, были I типа. Конечный продукт сверхновых в других галактиках, как правило, неизвестен. При амплитуде около сверхновые, наблюдаемые в других галактиках, в минимуме блеска должны быть объектами , т. е. совершенно недоступными наблюдению.

Все эти обстоятельства могут помочь при выяснении, какими могут быть звезды - предвестники сверхновых. Встречаемость сверхновых I типа в эллиптических галактиках с их старым населением позволяет считать и предсверхновые старыми звездами малой массы, израсходовавшими весь водород. Наоборот, у сверхновых II типа, которые появляются главным образом в богатых газом спиральных ветвях, предшественникам требуется для пересечения ветви около лет, так что их возраст около сотни миллионов лет. За это время звезда должна, начав с главной последовательности, покинуть ее при исчерпании водородного горючего в своих недрах. Звезда маломассивная не успеет пройти этот этап, и, следовательно, предвестник сверхновой II типа должен обладать массой не меньше и быть молодой ОВ-звездой вплоть до взрыва.

Правда, указанное выше появление сверхновых I типа в Большом Магеллановом облаке несколько нарушает достоверность описанной картины.

Естественно допустить, что предвестник сверхновой I типа есть белый карлике массой около , лишенный водорода. Но он стал таким потому, что входил в состав двойной системы, в которой более массивный красный гигант отдает свое вещество бурным потоком так, что от него остается, в конце концов, вырожденное ядро - белый карлик углеродно-кислородного состава, а бывший спутник сам становится гигантом и начинает обратно отсылать вещество белому карлику, образуя там Н = Не-оболочку. Масса его растет и тогда, когда приближается к пределу (18.9), а центральная температура его возрастает до 4-10° К, при которой «возгорается» углерод.

У обычной звезды с ростом температуры возрастает давление, которое поддерживает вышележащие слои. Но у вырожденного газа давление зависит только от плотности, оно не будет возрастать с температурой, и вышележащие слои будут падать к центру, а не расширяться, чтобы компенсировать рост температуры. Будет происходить спадание (коллапс) ядра и прилежащих к нему слоев. Спадание идет резко ускоренно, пока возросшая температура не снимет вырождения, и тогда начнется расширение звезды «в тщетных потугах» стабилизироваться, в то время как волна сгорания углерода проносится через нее. Этот процесс длится секунду-две, за это время вещество с массой около одной массы Солнца превращается в , распад которого (с выделением -квантов и позитронов) поддерживает высокую температуру у оболочки, бурно расширяющейся до размеров в десятки а. е. Образуется (с временем полураспада ), от распада которого возникает в количестве около Белый карлик разрушается до конца. Но не видно причин для образования нейтронной звезды. А между тем в остатках вспышки сверхновой мы не находим заметного количества железа, а находим нейтронные звезды (см. дальше). В этих фактах - главная трудность изложенной модели вспышки сверхновой I типа.

Но объяснения механизма вспышки сверхновой II типа встречаются с еще большими затруднениями. По-видимому, ее предшественник не входит в состав двойной системы. При большой массе (более ) он эволюционирует самостоятельно и быстро, переживая одну за другой фазы сгорания Н, Не, С, О до Na и Si и далее до Fe-Ni-ядра. Каждая новая фаза включается при исчерпании предыдущей, когда, потеряв способность противодействовать гравитации, ядро коллапсирует, температура повышается и следующий этап вступает в действие. Если дело дойдет до фазы Fe-Ni, источник энергии пропадет, так как железное ядро разрушается под воздействием высокоэнергичных фотонов на множество -частиц, и этот процесс эндотермичен. Он помогает коллапсу. И уже нет больше энергии, способной остановить коллапсирующую оболочку.

А у ядра есть возможность перейти в состояние черной дыры (см. с. 289) через стадию нейтронной звезды посредством реакции .

Дальнейшее развитие явлений становится очень неясным. Предложено много вариантов, но в них не содержится объяснения того, как при коллапсе ядра оболочка выбрасывается наружу.

Что же до описательной стороны дела, то при массе оболочки в и скорости выбрасывания около 2000 км/с, затраченная на это энергия достигает , а излучение в течение вспышки (в основном за 70 суток) уносит с собой .

Мы еще раз вернемся к рассмотрению процесса вспышки сверхновой, но уже с помощью изучения остатков вспышек (см. § 28).

Сверхновая звезда или вспышка сверхновой - феномен, в ходе которого звезда резко меняет свою яркость на 4-8 порядков (на десяток звёздных величин) с последующим сравнительно медленным затуханием вспышки . Является результатом катаклизмического процесса, возникающего в конце эволюции некоторых звёзд и сопровождающегося выделением огромной энергии.

Как правило, сверхновые звёзды наблюдаются постфактум, то есть когда событие уже произошло и его излучение достигло Земли. Поэтому природа сверхновых долго была неясна. Но сейчас предлагается довольно много сценариев, приводящих к подобного рода вспышкам, хотя основные положения уже достаточно понятны.

Взрыв сопровождается выбросом значительной массы вещества из внешней оболочки звезды в межзвёздное пространство, а из оставшейся части вещества ядра взорвавшейся звезды, как правило, образуется компактный объект - нейтронная звезда , если масса звезды до взрыва составляла более 8 солнечных масс (M ☉), либо чёрная дыра при массе звезды свыше 20 M ☉ (масса оставшегося после взрыва ядра - свыше 5 M ☉). Вместе они образуют остаток сверхновой.

Комплексное изучение ранее полученных спектров и кривых блеска в сочетании с исследованием остатков и возможных звёзд-предшественников позволяет строить более подробные модели и изучать уже условия, сложившиеся к моменту вспышки.

Помимо всего прочего, выбрасываемое в ходе вспышки вещество в значительной части содержит продукты термоядерного синтеза, происходившего на протяжении всей жизни звезды. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности химически эволюционирует.

Название отражает исторический процесс изучения звёзд, блеск которых значительно меняется со временем, так называемых новых звёзд .

Имя составляется из метки SN , после которой ставят год открытия, с окончанием из одно- или двухбуквенного обозначения. Первые 26 сверхновых текущего года получают однобуквенные обозначения, в окончании имени, из заглавных букв от A до Z . Остальные сверхновые получают двухбуквенные обозначения из строчных букв: aa , ab , и так далее. Неподтверждённые сверхновые обозначают буквами PSN (англ. possible supernova ) с небесными координатами в формате: Jhhmmssss+ddmmsss .

Общая картина

Современная классификация сверхновых
Класс Подкласс Механизм
I
Линии водорода отсутствуют
Сильные линии ионизированного кремния (Si II) на 6150 Ia Термоядерный взрыв
Iax
В максимуме блеска имеют меньшую светимость и меньшую же в сравнении Ia
Линии кремния слабые или отсутствуют Ib
Присутствуют линии гелия (He I).
Гравитационный коллапс
Ic
Линии гелия слабые или отсутствуют
II
Присутствуют линии водорода
II-P/L/N
Спектр постоянен
II-P/L
Нет узких линий
II-P
Кривая блеска имеет плато
II-L
Звёздная величина линейно уменьшается со временем
IIn
Присутствуют узкие линии
IIb
Спектр со временем меняется и становится похожим на спектр Ib.

Кривые блеска

Кривые блеска для I типа в высокой степени сходны: 2-3 суток идёт резкий рост, затем его сменяет значительное падение (на 3 звёздные величины) 25-40 суток с последующим медленным ослаблением, практически линейным в шкале звёздных величин. Абсолютная звёздная величина максимума в среднем для вспышек Ia составляет M B = − 19.5 m {\textstyle M_{B}=-19.5^{m}} , для Ib\c - .

А вот кривые блеска типа II достаточно разнообразны. Для некоторых кривые напоминали оные для I типа, только с более медленным и продолжительным падением блеска до начала линейной стадии. Другие, достигнув пика, держались на нём до 100 суток, а затем блеск резко падал и выходил на линейный «хвост». Абсолютная звёздная величина максимума варьируется в широком пределе от − 20 m {\textstyle -20^{m}} до − 13 m {\textstyle -13^{m}} . Среднее значение для IIp - M B = − 18 m {\textstyle M_{B}=-18^{m}} , для II-L M B = − 17 m {\textstyle M_{B}=-17^{m}} .

Спектры

Вышеприведённая классификация уже содержит некоторые основные черты спектров сверхновых различных типов, остановимся на том, что не вошло. Первая и очень важная особенность, которая долго мешала расшифровке полученных спектров - основные линии очень широкие.

Для спектров сверхновых типа II и Ib\c характерно:

  • Наличие узких абсорбционных деталей вблизи максимума блеска и узкие несмещённые эмиссионные компоненты.
  • Линии , , , наблюдаемые в ультрафиолетовом излучении.

Наблюдения вне оптического диапазона

Частота вспышек

Частота вспышек зависит от числа звёзд в галактике или, что то же самое для обычных галактик, светимости. Общепринятой величиной, характеризующей частоту вспышек в разных типах галактик, является SNu :

1 S N u = 1 S N 10 10 L ⊙ (B) ∗ 100 y e a r {\displaystyle 1SNu={\frac {1SN}{10^{10}L_{\odot }(B)*100year}}} ,

где L ⊙ (B) {\textstyle L_{\odot }(B)} - светимость Солнца в фильтре B. Для разных типов вспышек её величина составляет :

При этом сверхновые Ib/c и II тяготеют к спиральным рукавам.

Наблюдение остатков сверхновых

Каноническая схема молодого остатка следующая :

  1. Возможный компактный остаток; обычно это пульсар , но возможно и чёрная дыра
  2. Внешняя ударная волна, распространяющаяся в межзвёздном веществе .
  3. Возвратная волна, распространяющаяся в веществе выброса сверхновой.
  4. Вторичная, распространяющаяся в сгустках межзвёздной среды и в плотных выбросах сверхновой.

Вместе они образуют следующую картину: за фронтом внешней ударной волны газ нагрет до температур T S ≥ 10 7 К и излучает в рентгеновском диапазоне с энергией фотонов в 0,1-20 кэВ, аналогично газ за фронтом возвратной волны образует вторую область рентгеновского излучения. Линии высокоионизированных Fe, Si, S и т. п указывают на тепловую природу излучения из обоих слоёв.

Оптическое излучение молодого остатка создаёт газ в сгустках за фронтом вторичной волны. Так как в них скорость распространении выше, а значит газ остывает быстрее и излучение переходит из рентгеновского диапазона в оптический. Ударное происхождение оптического излучения подтверждает относительная интенсивность линий.

Теоретическое описание

Декомпозиция наблюдений

Природа сверхновых Ia отлична от природы остальных вспышек. Об этом ясно свидетельствует отсутствие вспышек Ib\c и II типов в эллиптических галактиках. Из общих сведений о последних известно, что там мало газа и голубых звёзд, а звездообразование закончилось 10 10 лет назад. Это значит, что все массивные звёзды уже завершили свою эволюцию, и остались звёзды с массой меньше солнечной, не более. Из теории эволюции звёзд известно, что звёзды подобного типа взорвать невозможно, а следовательно нужен механизм продления жизни для звёзд масс 1-2M ⊙ .

Отсутствие линий водорода в спектрах Ia\Iax говорит о том, что в атмосфере исходной звезды его крайне мало. Масса выброшенного вещества достаточно велика - 1M ⊙ , преимущественно содержит углерод, кислород и прочие тяжёлые элементы. А смещённые линии Si II указывает на то, что во время выброса активно идут ядерные реакции. Всё это убеждает, что в качестве звезды-предшественника выступает белый карлик, скорее всего углеродно-кислородный .

Тяготение к спиральным рукавам сверхновых Ib\c и II типов свидетельствует, что звездой прародителем являются короткоживущие O-звезды с массой 8-10M ⊙ .

Термоядерный взрыв

Один из способов высвободить требуемое количество энергии - резкое увеличение массы вещества, участвующего в термоядерном горении, то есть термоядерный взрыв. Однако физика одиночных звёзд такого не допускает. Процессы в звёздах, находящихся на главной последовательности, равновесны. Поэтому во всех моделях рассматриваются конечный этап звёздной эволюции - белые карлики . Однако сам по себе последний - устойчивая звезда, и всё может измениться только при приближении к пределу Чандрасекара . Это приводит к однозначному выводу, что термоядерный взрыв возможен только в кратных звёздных системах, скорее всего, в так называемых двойных звёздах .

В данной схеме есть две переменные, влияющие на состояние, химический состав и итоговую массу вовлечённого во взрыв вещества.

  • Второй компаньон - обычная звезда, с которого вещество перетекает на первый.
  • Второй компаньон - такой же белый карлик. Такой сценарий называет двойным вырождением.
  • Взрыв происходит при превышении предела Чандрасекара .
  • Взрыв происходит до него.

Общим во всех сценариях образования сверхновых Ia является то, что взрывающийся карлик скорее всего является углеродно-кислородным. Во взрывной волне горения, идущей от центра к поверхности, текут реакции :

12 C + 16 O → 28 S i + γ (Q = 16.76 M e V) {\displaystyle ^{12}C~+~^{16}O~\rightarrow ~^{28}Si~+~\gamma ~(Q=16.76~MeV)} , 28 S i + 28 S i → 56 N i + γ (Q = 10.92 M e V) {\displaystyle ^{28}Si~+~^{28}Si~\rightarrow ~^{56}Ni~+~\gamma ~(Q=10.92~MeV)} .

Масса вступающего в реакцию вещества определяет энергетику взрыва и, соответственно, блеск в максимуме. Если предположить, что в реакцию вступает вся масса белого карлика, то энергетика взрыва составит 2,2 10 51 эрг .

Дальнейшее поведение кривой блеска в основном определяется цепочкой распада :

56 N i → 56 C o → 56 F e {\displaystyle ^{56}Ni~\rightarrow ~^{56}Co~\rightarrow ~^{56}Fe}

Изотоп 56 Ni нестабилен и имеет период полураспада 6.1 дней. Далее e -захват приводит к образованию ядра 56 Co преимущественно в возбуждённом состоянии с энергией 1.72 МэВ. Этот уровень нестабилен, и переход электрона в основное состояние сопровождается испусканием каскада γ-квантов с энергиями от 0.163 МэВ до 1.56 МэВ. Эти кванты испытывают комптоновское рассеяние , и их энергия быстро уменьшается до ~ 100 кэВ. Такие кванты уже эффективно поглощаются фотоэффектом, и, как следствие, нагревают вещество. По мере расширения звезды плотность вещества в звезде падает, число столкновений фотонов уменьшается, и вещество поверхности звезды становится прозрачным для излучения. Как показывают теоретические расчёты, такая ситуация наступает примерно через 20-30 суток после достижения звездой максимума светимости.

Через 60 суток после начала вещество становится прозрачным для γ-излучения. На кривой блеска начинается экспоненциальный спад. К этому времени изотоп 56 Ni уже распался, и энерговыделение идёт за счёт β-распада 56 Co до 56 Fe (T 1/2 = 77 дней) с энергиями возбуждения вплоть до 4.2 МэВ.

Гравитационный коллапс ядра

Второй сценарий выделения необходимой энергии - это коллапс ядра звезды. Масса его должна быть в точности равна массе его остатка - нейтронной звезды, подставив типичные значения получаем :

E t o t ∼ G M 2 R ∼ 10 53 {\displaystyle E_{tot}\sim {\frac {GM^{2}}{R}}\sim 10^{53}} эрг,

где M = 0 , а R = 10 км, G - гравитационная постоянная. Характерное время при этом:

τ f f ∼ 1 G ρ 4 ⋅ 10 − 3 ⋅ ρ 12 − 0 , 5 {\displaystyle \tau _{ff}\sim {\frac {1}{\sqrt {G\rho }}}~4\cdot 10^{-3}\cdot \rho _{12}^{-0,5}} c,

где ρ 12 - плотность звезды, нормированная на 10 12 г/см 3 .

Полученное значение на два порядка превосходит кинетическую энергию оболочки. Необходим переносчик, который должен с одной стороны унести высвободившуюся энергию, а с другой - не провзаимодействовать с веществом. На роль такого переносчика подходит нейтрино.

За их образование отвечают несколько процессов. Первый и самый важный для дестабилизации звезды и начала сжатия - процесс нейтронизации :

3 H e + e − → 3 H + ν e {\displaystyle {}^{3}He+e^{-}\to {}^{3}H+\nu _{e}}

4 H e + e − → 3 H + n + ν e {\displaystyle {}^{4}He+e^{-}\to {}^{3}H+n+\nu _{e}}

56 F e + e − → 56 M n + ν e {\displaystyle {}^{56}Fe+e^{-}\to {}^{56}Mn+\nu _{e}}

Нейтрино от этих реакций уносят 10 %. Главную же роль в охлаждении играет УРКА-процессы (нейтринное охлаждение):

E + + n → ν ~ e + p {\displaystyle e^{+}+n\to {\tilde {\nu }}_{e}+p}

E − + p → ν e + n {\displaystyle e^{-}+p\to \nu _{e}+n}

Вместо протонов и нейтронов могут выступать и атомные ядра, с образованием нестабильного изотопа, который испытывает бета-распад:

E − + (A , Z) → (A , Z − 1) + ν e , {\displaystyle e^{-}+(A,Z)\to (A,Z-1)+\nu _{e},}

(A , Z − 1) → (A , Z) + e − + ν ~ e . {\displaystyle (A,Z-1)\to (A,Z)+e^{-}+{\tilde {\nu }}_{e}.}

Интенсивность этих процессов нарастает по мере сжатия, тем самым его ускоряя. Останавливает же это процесс рассеяние нейтрино на вырожденных электронах, в ходе которого термолизуются и запираются внутри вещества. Достаточная концентрация вырожденных электронов достигается при плотностях ρ n u c = 2 , 8 ⋅ 10 14 {\textstyle \rho _{nuc}=2,8\cdot 10^{14}} г/см 3 .

Заметим, что процессы нейтронизации идут только при плотностях 10 11 /см 3 , достижимых только в ядре звезды. Это значит, что гидродинамическое равновесие нарушается только в нём. Внешние же слои находятся в локальном гидродинамическом равновесии, и коллапс начинается только после того, как центральное ядро сожмётся и образует твёрдую поверхность. Отскок от этой поверхности обеспечивает сброс оболочки.

Модель молодого остатка сверхновой

Теория эволюции остатка сверхновой

Выделяется три этапа эволюции остатка сверхновой:

Расширение оболочки останавливается в тот момент, когда давление газа остатка уравняется с давлением газа в межзвёздной среде. После этого остаток начинает диссипировать, сталкиваясь с хаотично движущимися облаками. Время рассасывания достигает:

T m a x = 7 E 51 0.32 n 0 0.34 P ~ 0 , 4 − 0.7 {\displaystyle t_{max}=7E_{51}^{0.32}n_{0}^{0.34}{\tilde {P}}_{0,4}^{-0.7}} лет

Теория возникновения синхротронного излучения

Построение детального описания

Поиск остатков сверхновых

Поиск звёзд-предшественников

Теория сверхновых Ia

Помимо неопределённостей в теориях сверхновых Ia, описанных выше, много споров вызывает сам механизм взрыва. Чаще всего модели можно разделить по следующим группам :

  • Мгновенная детонация
  • Отложенная детонация
  • Пульсирующая отложенная детонация
  • Турбулентное быстрое горение

По крайней мере для каждой комбинации начальных условий перечисленные механизмы можно встретить в той или иной вариации. Но этим круг предложенных моделей не ограничивается. В качестве примера можно привести модели, когда детонируют сразу два белых карлика. Естественно, это возможно только в тех сценариях, когда оба компонента проэволюционировали.

Химическая эволюция и воздействие на межзвёздную среду

Химическая эволюция Вселенной. Происхождение элементов с атомным номером выше железа

Взрывы сверхновых - основной источник пополнения межзвёздной среды элементами с атомными номерами больше (или как говорят тяжелее ) He . Однако процессы их породившие для различных групп элементов и даже изотопов свои.

R-процесс

r-проце́сс - это процесс образования более тяжёлых ядер из более лёгких путём последовательного захвата нейтронов в ходе (n ,γ) реакций и продолжается до тех пор, пока темп захвата нейтронов выше, чем темп β − -распада изотопа . Иными словами среднее время захвата n нейтронов τ(n,γ) должно быть:

τ (n , γ) ≈ 1 n τ β {\displaystyle \tau (n,\gamma)\approx {\frac {1}{n}}\tau _{\beta }}

где τ β - среднее время β-распада ядер, образующих цепочку r-процесса. Это условие накладывает ограничение на плотность нейтронов, т.к.:

τ (n , γ) ≈ (ρ (σ n γ , v n) ¯) − 1 {\displaystyle \tau (n,\gamma)\approx \left(\rho {\overline {(\sigma _{n\gamma },v_{n})}}\right)^{-1}}

где (σ n γ , v n) ¯ {\displaystyle {\overline {(\sigma _{n\gamma },v_{n})}}} - произведение сечения реакции (n ,γ) на скорость нейтрона относительно ядра мишени, усреднённое по максвелловскому спектру распределения скоростей. Учитывая что, r-процесс происходит в тяжёлых и средних ядрах, 0.1 с < τ β < 100 с, то для n ~ 10 и температуры среды T = 10 9 , получим характерную плотность

ρ ≈ 2 ⋅ 10 17 {\displaystyle \rho \approx 2\cdot 10^{17}} нейтронов/см 3 .

Такие условия достигаются в:

ν-процесс

Основная статья: ν-процесс

ν-процесс - это процесс нуклеосинтеза, через взаимодействие нейтрино с атомными ядрами. Возможно, он ответственен за появление изотопов 7 Li , 11 B , 19 F , 138 La и 180 Ta

Влияние на крупномасштабную структуру межзвёздного газа галактики

История наблюдений

Интерес Гиппарха к неподвижным звёздам, возможно, был вдохновлён наблюдением сверхновой звезды (по Плинию). Наиболее ранняя запись, которая идентифицируется как запись наблюдений сверхновой SN 185 (англ. ) , была сделана китайскими астрономами в 185 году нашей эры. Самая яркая известная сверхновая SN 1006 была подробно описана китайскими и арабскими астрономами. Хорошо наблюдалась сверхновая SN 1054 , породившая Крабовидную туманность . Сверхновые звёзды SN 1572 и SN 1604 были видны невооружённым глазом и имели большое значение в развитии астрономии в Европе, так как были использованы в качестве аргумента против аристотелевской идеи, гласившей, что мир за пределами Луны и Солнечной системы неизменен. Иоганн Кеплер начал наблюдение SN 1604 17 октября 1604 года. Это была вторая сверхновая, которая была зарегистрирована на стадии возрастания блеска (после SN 1572, наблюдавшейся Тихо Браге в созвездии Кассиопеи).

С развитием телескопов сверхновые звёзды стало возможно наблюдать и в других галактиках, начиная с наблюдений сверхновой S Андромеды в Туманности Андромеды в 1885 году . В течение двадцатого столетия были разработаны успешные модели для каждого типа сверхновых и понимание их роли в процессе звездообразования возросло. В 1941 году американскими астрономами Рудольфом Минковским и Фрицем Цвикки была разработана современная схема классификации сверхновых звёзд.

В 1960-х астрономы выяснили, что максимальная светимость взрывов сверхновых может быть использована в качестве стандартной свечи , следовательно, показателя астрономических расстояний. Сейчас сверхновые дают важную информацию о космологических расстояниях. Самые далёкие сверхновые оказались слабее, чем ожидалось, что, по современным представлениям, показывает, что расширение Вселенной ускоряется.

Были разработаны способы для реконструкции истории взрывов сверхновых, которые не имеют письменных записей наблюдений. Дата появления сверхновой Кассиопея A определялась по световому эху от туманности , в то время как возраст остатка сверхновой RX J0852.0-4622 (англ. ) оценивается по измерению температуры и γ-выбросов от распада титана-44. В 2009 году в антарктических льдах были обнаружены нитраты , соответствующие времени взрыва сверхновой.

23 февраля 1987 года в Большом Магеллановом Облаке на расстоянии 168 тыс. световых лет от Земли вспыхнула сверхновая SN 1987A , самая близкая к Земле, наблюдавшаяся со времён изобретения телескопа. Впервые был зарегистрирован поток нейтрино от вспышки. Вспышка интенсивно изучалась с помощью астрономических спутников в ультрафиолетовом, рентгеновском и гамма-диапазонах. Остаток сверхновой исследовался с помощью ALMA , «Хаббла » и «Чандры ». Ни нейтронная звезда , ни чёрная дыра , которые, по некоторым моделям, должны находиться на месте вспышки, пока не обнаружены.

22 января 2014 года в галактике M82 , расположенной в созвездии Большая Медведица, вспыхнула сверхновая звезда SN 2014J . Галактика M82 находится на расстоянии 12 млн световых лет от нашей галактики и имеет видимую звёздную величину чуть менее 9. Данная сверхновая является самой близкой к Земле, начиная с 1987 года (SN 1987A).

Наиболее известные сверхновые звёзды и их остатки

  • Сверхновая SN 1604 (Сверхновая Кеплера)
  • Сверхновая G1.9+0.3 (Самая молодая из известных в нашей Галактике)

Исторические сверхновые в нашей Галактике (наблюдавшиеся)

Сверхновая Дата вспышки Созвездие Макс. блеск Рассто-
яние (св. лет)
Тип вспы-
шки
Дли-
тель-
ность види-
мости
Остаток Примечания
SN 185 , 7 декабря Центавр −8 3000 Ia ? 8-20 мес. G315.4-2.3 (RCW 86) китайские летописи: наблюдалась рядом с Альфой Центавра.
SN 369 неизвестно неиз-
вестно
неиз-
вестно
неиз-
вестно
5 мес. неизвестно китайские летописи: положение известно очень плохо. Если она находилась вблизи галактического экватора, весьма вероятно, что это была сверхновая, если же нет, она, скорее всего, была медленной новой.
SN 386 Стрелец +1,5 16 000 II ? 2-4 мес. G11.2-0.3 китайские летописи
SN 393 Скорпион 0 34 000 неиз-
вестно
8 мес. несколько кандидатур китайские летописи
SN 1006 , 1 мая Волк −7,5 7200 Ia 18 мес. SNR 1006 швейцарские монахи, арабские учёные и китайские астрономы.
SN 1054 , 4 июля Телец −6 6300 II 21 мес. Крабовидная туманность на Ближнем и Дальнем Востоке (в европейских текстах не значится, не считая туманных намёков в ирландских монастырских хрониках).
SN 1181 , август Кассиопея −1 8500 неиз-
вестно
6 мес. Возможно, 3C58 (G130.7+3.1) труды профессора Парижского университета Александра Некэма, китайские и японские тексты.
SN 1572 , 6 ноября Кассиопея −4 7500 Ia 16 мес. Остаток сверхновой Тихо Это событие зафиксировано во многих европейских источниках, в том числе и в записях молодого Тихо Браге . Правда, он заметил вспыхнувшую звезду лишь 11 ноября , но зато следил за ней целых полтора года и написал книгу «De Nova Stella» («О новой звезде») - первый астрономический труд на эту тему.
SN 1604 , 9 октября Змееносец −2,5 20000 Ia 18 мес. Остаток сверхновой Кеплера С 17 октября её стал изучать Иоганн Кеплер , который изложил свои наблюдения в отдельной книге.
SN 1680 , 16 августа Кассиопея +6 10000 IIb неиз-
вестно (не более недели)
Остаток Сверхновой Кассиопея А возможно замечена Флемстидом и занесена в каталог как 3 Кассиопеи .

Как много впечатлений связанно у любителей и профессионалов — исследователей космоса с этими словами. Само слово «новые» несет в себе положительный смысл, а «сверх» -суперположительный, но, к сожалению, обманывает саму суть. Сверхновые скорее можно назвать сверхстарым звездами, потому что это практически последняя стадия развития Звезды. Так сказать яркий эксцентричный апофеоз звездной жизни. Вспышка порой затмевает всю галактику, в которой находиться умирающая звезда, и заканчивается полным ее угасанием.
Ученые выделили 2 типа Сверхновых. Один ласково прозвали взрывом белого карлика (тип I) который по сравнению с нашим солнцем более плотный, и при этом гораздо меньший в радиусе. Маленький, тяжелы Белый карлик – предпоследняя нормальная стадия эволюции многих звезд. В нем уже практически нет водорода в оптическом спектре. И если белый карлик существует в симбиозе двойной системы с другой звездой, он перетягивает ее вещество до тех пор, пока не превышает свой передел. С. Чандресекар в 30-х годах 20 века сказал, что у каждого карлика есть четки предел плотности и массы, превышая который происходит коллапс. Бесконечно сжиматься невозможно и рано или поздно должен случиться взрыв! Второй тип образования сверхновой звезды вызван процессом термоядерного синтеза, который образуя тяжелые металлы, сжимается в себя, от чего начинает повышаться температура в центре звезды. Ядро звезды сжимается все сильней и в нем начинают происходить процессы нейтронизации («терки» протонов и электронов, в ходе которых оба превращаются в нейтроны), что приводит к потере энергии и остыванию центра звезды. Все это провоцирует разряженную атмосферу, и оболочка устремляется к ядру. Взрыв! Мириады маленьких кусочков звезды разлетаются по всему космосу, а яркое свечение из далекой галактики, где миллионы лет назад (количество нулей в годах видимости звезды, зависит от ее удаленности от Земли) взорвалась звезда, видна сегодня ученым планеты Земля. Весточка трагедии прошлого, еще одна оборвавшаяся жизнь, печальная красота, которую иногда мы можем наблюдать веками.

Так, например, Крабовидная туманность, которую можно увидеть в глазок телескопа современных обсерваторий — это последствия взрыва сверхновой, которую видели китайский астрономы в 1054 году. Так интересно осознавать, что то, на что сегодня смотришь ты, почти 1000 лет восхищался человек, уже давным-давно не существующий на Земле. В этом вся таинственность Вселенной, ее медленное тянущееся существование, которое делает нашу жизнь — вспышкой искры костра, она поражает и приводит в некоторый трепет. Ученые выделили несколько наиболее известных взрывов сверхновых звезд, обозначение которых ведется по четкой оговоренной схеме. Латинская SuperNova сократилась до символов SN, затем следует запись года наблюдения и в конце записывается порядковый номер в году. Таким образом, можно увидеть следующие названия известных сверхновых:
Крабовидная туманность – как и говорилось ранее, она является итогом взрыва сверхновой, которая находиться на расстоянии 6500 световых лет от Земли, с диаметром на сегодняшний день 6 000 световых лет. Эта туманность продолжает разлетаться в разные стороны, хотя взрыв произошел чуть менее 1000 лет назад. А в центре ее находить нейтронная звезда-пульсар, который вращается вокруг своей оси. Интересно то, что при большой яркости эта туманность имеет постоянный поток энергии, что позволяет ставить ее ориентиром при калибровке рентгеновской астрономии. Другой находкой стала сверхновая SN1572, как уже видно из названия, вспышку ученые наблюдали в 1572 году в ноябре. По всем признаком это звезда была белым карликом. В 1604 году в течение целого года китайские, корейские, а затем европейские астрологи могли наблюдать взрыв-свечение сверхновой SN1604, которая находиться в созвездии Змееносца. Иоган Кеплер посвятил ее изучению свою основную работу «О новой звезде в созвездии Змееносца» в связи, с чем сверхновая была названа именем ученого – SuperNova Kepler. Самой близкой вспышкой сверхновой стало свечение в 1987 году — SN1987A, находящаяся в Большом Магеллановом Облаке в 50 парсеках от нашего Солнца, карликовой галактике – спутнике Млечного пути. Этот взрыв перевернул некоторые положение уже устоявшейся теории звездной эволюции. Так полагалось, что вспыхивать могут только красные гиганты, а тут, так некстати взял и взорвался голубой! Голубой сверхгигант (масса более 17 масс Солнца) Sanduleak. Очень красивые остатки планеты образуют два необычных соединяющихся кольца, изучением которых сегодня занимаются ученые. Следующая сверхновая поразили ученых в 1993 году — SN1993J, которая до взрыва была красным сверхгигантом. Но удивительно то, что остатки, которые обязаны гаснуть после взрыва, наоборот начали набирать яркость. Почему?

Через несколько лет была обнаружена планета — спутник, которая не пострадала от взрыва сверхновой соседки и создавала условия свечения сорванной незадолго до взрыва оболочки звезды-компаньона (соседки соседками, а с гравитацией не поспоришь…), наблюдаемые учеными. Этой звезде так же пророчиться стать красным гигантом и сверхновой. Взрыв следующей сверхновой в 2006 году (SN206gy) признан самым ярким свечением во всей истории наблюдения за этими явлениями. Это позволило ученым выдвинуть новые теории взрывов сверхновых (такие как кварковые звезды, столкновение двух массивных планет и другие) и назвать этот взрыв — взрывом гиперновой! И последняя интересная сверхновая G1.9+0.3. Первый раз ее сигналы, как радиоисточника Галактики, поймал радиотелескоп VLA. А сегодня ее изучением занимается обсерватория Чандра. Удивительна скорость расширения остатков взорванной звезды, она составляет 15 000 км в час! Что является 5% от скорости света!
Кроме этих самых интересных взрывов сверхновых и их остатков, конечно, существуют и другие «будничные» события космоса. Но факт остается фактом все, что нас сегодня окружает это итог вспышек сверхновых. Ведь в теории в начале существования Вселенная состояла из легких газов гелия и водорода, которые в процессе горения звезд превращались в другие «строительные» элементы для всех существующих ныне планет. Другими словами Звезды отдавали жизнь за рождение новой жизни!

Старинные летописи и хроники сообщают нам, что изредка на небе внезапно появлялись звезды исключительно большой яркости. Они быстро увеличивали яркость, а затем медленно, в течение нескольких месяцев угасали и переставали быть видимыми. Вблизи максимума блеска эти звезды были видны даже днем. Наиболее яркими были вспышки в 1006 и 1054 годах, сведения о которых содержатся в китайских и японских трактатах. В 1572 году такая звезда вспыхнула в созвездии Кассиопеи и наблюдалась выдающимся астрономом Тихо Браге, а в 1604 году подобную вспышку в созвездии Змееносца наблюдал Иоганн Кеплер. С тех пор, за четыре столетия "телескопической" эры в астрономии подобных вспышек не наблюдалось. Однако с развитием наблюдательной астрономии исследователи стали обнаруживать довольно большое количество похожих вспышек, правда, не достигавших очень большой яркости. Эти звезды, внезапно появляющиеся и вскоре как бы бесследно исчезающие, стали называть "Новыми". Казалось, что и звезды 1006 и 1054 годов, звезды Тихо и Кеплера были такими же вспышками, только очень близкими и из-за этого более яркими. Но оказалось, что это не так. В 1885 году астроном Хартвиг на обсерватории в Тарту заметил появление новой звезды в хорошо известной туманности Андромеды. Эта звезда достигла 6-й видимой звездной величины, то есть мощность ее излучения была лишь в 4 раза меньше, чем от всей туманности. Тогда это не удивило астрономов: ведь природа туманности Андромеды была неизвестна, предполагалось, что это всего лишь довольно близкое к Солнцу облако пыли и газа. Только в 20-х годах ХХ века окончательно стало ясно, что туманность Андромеды и другие спиральные туманности - огромные звездные системы, состоящие из сотен миллиардов звезд и удаленные от нас на миллионы световых лет. В туманности Андромеды были обнаружены и вспышки обычных Новых звезд, видимых как объекты 17-18 звездной величины. Стало ясно, что звезда 1885 года превосходила Новые звезды по мощности излучения в десятки тысяч раз, на короткое время ее блеск был почти равен блеску огромной звездной системы! Очевидно, природа этих вспышек должна быть различной. Позднее эти наиболее мощные вспышки получили название "Сверхновые звезды", в котором приставка "сверх" означала их большую мощность излучения, а не большую "новизну".

Поиск и наблюдения Сверхновых

На фотографиях далеких галактик вспышки сверхновых стали замечать довольно часто, но эти открытия были случайными и не могли дать сведений, необходимых для объяснения причины и механизма этих грандиозных вспышек. Однако в 1936 году астрономы Бааде и Цвикки, работавшие на Паломарской обсерватории в США, начали планомерный систематический поиск сверхновых. В их распоряжении был телескоп системы Шмидта, позволяющий фотографировать области в несколько десятков квадратных градусов и дающий очень четкие изображения даже слабых звезд и галактик. Сравнивая фотографии, одной области неба, полученные через несколько недель, можно было легко заметить появление новых звезд в галактиках, хорошо различимых на снимках. Для фотографирования выбирались области неба, наиболее богатые близкими галактиками, где их число на одном снимке могло достигать нескольких десятков и вероятность обнаружить сверхновые была наибольшей.

В 1937 году Бааде и Цвикки удалось открыть 6 сверхновых. Среди них были довольно яркие звезды 1937С и 1937D (астрономы решили обозначать сверхновые, добавляя к году открытия буквы, показывающие очередность открытия в текущем году), достигшие в максимуме соответственно 8 и 12 звездной величин. Для них были получены кривые блеска - зависимость изменения блеска со временем - и большое количество спектрограмм - фотографий спектров звезды, показывающих зависимость интенсивности излучения от длины волны. Этот материал на несколько десятилетий стал основным для всех исследователей, пытавшихся разгадать причины вспышек сверхновых.

К сожалению, вторая мировая война прервала так успешно начавшуюся программу наблюдений. Систематический поиск сверхновых на Паломарской обсерватории был возобновлен только в 1958 году, но уже с более крупным телескопом системы Шмидта, позволявшим фотографировать звезды до 22-23 величин. С 1960 года к этой работе присоединился ряд других обсерваторий в разных странах мира, где имелись подходящие телескопы. В СССР такая работа велась на Крымской станции ГАИШ, где установлен телескоп-астрограф с диаметром объектива 40 см и очень большим полем зрения - почти 100 квадратных градусов, и в Абастуманской астрофизической обсерватории в Грузии - на телескопе Шмидта с входным отверстием 36 см. И в Крыму, и в Абастумани было сделано немало открытий сверхновых. Из других обсерваторий наибольшее число открытий приходилось на обсерваторию Асиаго в Италии, где работали два телескопа системы Шмидта. Но все же Паломарская обсерватория оставалась лидером и по числу открытий, и по предельной звездной величине доступных для обнаружения звезд. Общими усилиями в 60-х и 70-х годах открывали до 20 сверхновых за год, и их число стало быстро расти. Сразу после открытия начинались фотометрические и спектроскопические наблюдения на крупных телескопах.

В 1974 году умер Ф.Цвикки, и вскоре поиск сверхновых на Паломарской обсерватории был прекращен. Число открываемых сверхновых уменьшилось, однако с начала 80-х годов снова начало расти. Были начаты новые программы поиска на южном небе - в обсерватории Серро эль Робле в Чили, к тому же открывать сверхновые стали любители астрономии. Оказалось, что с помощью небольших любительских телескопов с объективами 20-30 см можно довольно успешно искать вспышки ярких сверхновых, систематически наблюдая визуально определенный набор галактик. Наибольшего успеха добился священник из Австралии Роберт Эванс, которому удавалось с начала 80-х годов открывать до 6 сверхновых в год. Неудивительно, что астрономы-профессионалы шутили о его "прямой связи с небесами".

В 1987 году была открыта ярчайшая сверхновая XX века - SN 1987A в галактике Большое Магелланово Облако, являющейся "спутником" нашей Галактики и удаленной от нас всего на 55 килопарсек. В течение некоторого времени эта сверхновая была видна даже невооруженным глазом, достигнув в максимуме блеска около 4 звездной величины. Однако наблюдать ее можно было только в южном полушарии. Для этой сверхновой были получены уникальные по точности и продолжительности ряды фотометрических и спектральных наблюдений, и сейчас астрономы продолжают следить, как развивается процесс превращения сверхновой в расширяющуюся газовую туманность.


Сверхновая 1987A. Вверху слева - фотография области, где вспыхнула сверхновая, полученная задолго до вспышки. Звезда, которая вскоре взорвется, отмечена стрелкой. Вверху справа - фотография той же области неба, когда сверхновая была около максимума блеска. Внизу - так выглядит сверхновая спустя 12 лет после вспышки. Кольца вокруг сверхновой - межзвездный газ (частично выброшенный звездой-предсверхновой еще до вспышки), ионизованный при вспышке и продолжающий светиться.

В середине 80-х годов стало ясно, что эпоха фотографии в астрономии заканчивается. Стремительно совершенствовавшиеся ПЗС-приемники во много раз превосходили фотографическую эмульсию по чувствительности и регистрируемому диапазону длин волн, практически не уступая ей по разрешению. Изображение, полученное ПЗС-камерой, можно было сразу видеть на экране компьютера и сравнивать с полученными ранее, а для фотографии процесс проявления, сушки и сравнения занимал в лучшем случае сутки. Единственное оставшееся преимущество фотопластинок - возможность фотографирования больших областей неба - также оказалось для поиска сверхновых несущественным: телескоп с ПЗС-камерой мог получить по отдельности изображения всех галактик, попадающих на фотопластинку, за время сравнимое с фотографической экспозицией. Появились проекты полностью автоматизированных программ поиска сверхновых, в которых телескоп по заранее введенной программе наводится на выбранные галактики, а полученные изображения сравниваются компьютером с полученными ранее. Только если обнаружен новый объект, компьютер подает сигнал астроному, который и выясняет, действительно ли зафиксирована вспышка сверхновой. В 90-х годах такая система, использующая 80-см телескоп-рефлектор, начала работать в Ликской обсерватории (США).

Доступность простых ПЗС-камер для любителей астрономии привела к тому, что от визуальных наблюдений они переходят к ПЗС-наблюдениям, и тогда для телескопов с объективами 20-30 см становятся доступными звезды до 18 и даже 19 величины. Внедрение автоматизированного поиска и рост числа любителей астрономии, занимающихся поиском сверхновых с помощью ПЗС-камер, привел к лавинообразному росту числа открытий: в настоящее время открывется более 100 сверхновых в год, а общее количество открытий превысило 1500. В последние годы был начат также поиск очень далеких и слабых сверхновых на крупнейших телескопах с диаметром зеркала 3-4 метра. Оказалось, что исследования сверхновых, достигающих в максимуме блеска 23-24 величины, могут дать ответы на многие вопросы о строении и судьбе всей Вселенной. За одну ночь наблюдений на таких телескопах, оснащенных самыми совершенными ПЗС-камерами, можно открыть более 10 далеких сверхновых! Несколько изображениий таких сверхновых показаны на приведенном ниже рисунке.

Почти для всех сверхновых, открываемые в настоящее время, удается получить хотя бы один спектр, и для многих известны кривые блеска (в этом также велика заслуга любителей астрономии). Так что объем доступного для анализа наблюдательного материала очень велик, и казалось бы, все вопросы о природе этих грандиозных явлений должны быть решены. К сожалению, пока это не так. Рассмотрим подробнее основные вопросы, встающие перед исследователями сверхновых, и наиболее вероятные на сегодняшний день ответы на них.

Классификация Сверхновых, кривые блеска и спектры

Прежде чем делать какие-то выводы о физической природе явления, необходимо иметь полное представление о его наблюдаемых проявлениях, которые должны быть должным образом классифицированы. Естественно, самый первый вопрос, вставший перед исследователями сверхновых, был - одинаковы ли они, а если нет, то насколько отличаются и поддаются ли классификации. Уже первые сверхновые, открытые Бааде и Цвикки, показали существенные различия в кривых блеска и спектрах. В 1941 году Р.Минковский предложил разделить сверхновые на два основных типа по характеру спектров. К I типу он отнес сверхновые, спектры которых были совершенно не похожи на спектры всех известных в то время объектов. Линии наиболее распространенного во Вселенной элемента - водорода - совершенно отсутствовали, весь спектр состоял из широких максимумов и минимумов, не поддававшихся отождествлению, ультрафиолетовая часть спектра была очень слабой. Ко II типу были отнесены сверхновые, спектры которых показали некоторое сходство с "обычными" Новыми звездами присутствием очень интенсивных эмиссионных линий водорода, ультрафиолетовая часть спектра у них яркая.

Спектры сверхновых I типа оставались загадочными в течение трех десятилетий. Только после того, как Ю.П.Псковский показал, что полосы в спектрах - это не что иное, как участки непрерывного спектра между широкими и довольно глубокими линиями поглощения, отождествление спектров сверхновых I типа сдвинулось с мертвой точки. Был отождествлен ряд линий поглощения, прежде всего наиболее интенсивные линии однократно ионизованных кальция и кремния. Длины волн этих линий сдвинуты в фиолетовую сторону спектра из-за эффекта Доплера в расширяющейся со скоростью 10-15 тыс. км в секунду оболочке. Отождествить все линии в спектрах сверхновых I типа чрезвычайно трудно, так как они сильно расширены и накладываются друг на друга; кроме упомянутых кальция и кремния удалось отождествить линии магния и железа.

Анализ спектров сверхновых позволил сделать важные выводы: в оболочках, выброшенных при вспышке сверхновых I типа, почти нет водорода; в то время как состав оболочек сверхновых II типа почти такой же, как у солнечной атмосферы. Скорости расширения оболочек - от 5 до 15-20 тыс. км/c, температура фотосферы около максимума - 10-20 тыс. градусов. Температура быстро падает и через 1-2 месяца достигает значения 5-6 тыс. градусов.

Различались у сверхновых и кривые блеска: для I типа все они были очень похожими, имеют характерную форму с очень быстрым ростом блеска к максимуму, который длится не более 2-3 суток, быстрым падением блеска на 3 звездные величины за 25-40 суток и последующим медленным ослаблением, практически линейным в шкале звездных величин, что соответствует экспоненциальному ослаблению светимости.

Кривые блеска сверхновых II типа оказались гораздо более разнообразными. Некоторые были похожи на кривые блеска сверхновых I типа, только с более медленным и продолжительным падением блеска до начала линейного "хвоста", у других сразу после максимума начинается участок почти постоянного блеска - так называемое "плато", которое может продолжаться до 100 суток. Затем блеск резко падает и выходит на линейный "хвост". Все ранние кривые блеска были получены на основании фотографических наблюдений в так называемой фотографической системе звездных величин, соответствующей чувствительности обычных фотопластинок (интервал длин волн 3500-5000 A). Уже использование в дополение к ней фотовизуальной системы (5000-6000 A) позволило получить важные сведения об изменении показателя цвета (или просто "цвета") сверхновых: оказалось, что после максимума сверхновые обеих типов непрерывно "краснеют", то есть основная часть излучения сдвигается в сторону более длинных волн. Это покраснение прекращается на стадии линейного падения блеска и может даже смениться "поголубением" сверхновых.

Кроме этого, сверхновые I и II типов различались по типам галактик, в которых они вспыхивали. Сверхновые типа II были обнаружены только в спиральных галактиках, где в настоящее время продолжают образовываться звезды и присутствуют как старые звезды малой массы, так и молодые, массивные и "короткоживущие" (всего несколько миллионов лет) звезды. Сверхновые I типа вспыхивают как в спиральных, так и в эллиптических галактиках, где, как считается, интенсивное образование звезд не происходит уже миллиарды лет.

В таком виде классификация сверхновых сохранялась до середины 80-х годов. Начало широкого применения в астрономии ПЗС-приемников позволило существенно увеличить количество и качество наблюдательного материала. Современная аппаратура позволяла получать спектрограммы для слабых, недоступных прежде объектов; с гораздо большей точностью можно было определять интенсивности и ширины линий, регистрировать более слабые линии в спектрах. ПЗС-приемники, инфракрасные детекторы и приборы, установленные на космических аппаратах, позволили наблюдать сверхновые во всем диапазоне оптического излучения от ультрафиолетового до далекого инфракрасного диапазона; проводились также гамма-, рентгеновские и радио-наблюдения сверхновых.

В результате казавшаяся установившейся двоичная классификация сверхновых стала быстро изменяться и усложняться. Оказалось, что I тип сверхновых далеко не так однороден, как казалось. В спектрах этих сверхновых обнаружились существенные различия, наиболее значительными из них была интенсивность линии однократно ионизованного кремния, наблюдавшаяся на длине волны около 6100 А. Для большинства сверхновых I типа эта линия поглощения около максимума блеска была самой заметной деталью в спектре, однако для некоторых сверхновых она практически отсутствовала, а наиболее интенсивными были линии поглощения гелия.

Эти сверхновые получили обозначение Ib, а "классические" сверхновые I типа стали обозначать Ia. В дальнейшем оказалось, что у некоторых сверхновых Ib отсутствуют и линии гелия, и их назвали типом Ic. Эти новые типы сверхновых отличались от "классических" Ia и по кривым блеска, которые оказались достаточно разнообразными, хотя по форме и похожи на кривые блеска сверхновых Ia. Сверхновые типа Ib/c оказались также источниками радиоизлучения. Все они были обнаружены в спиральных галактиках, в областях, где возможно недавно происходило образование звезд и в настоящее время еще существуют достаточно массивные звезды.

Кривые блеска сверхновых Ia в красном и инфракрасных диапазонах спектра (полосы R,I,J,H,K) сильно отличались от исследовавшихся ранее кривых в полосах B и V. Если на кривой в R заметно "плечо" через 20 дней после максимума, то в фильтре I и более длинноволновых диапазонах появляется настоящий второй максимум. Однако у некоторых сверхновых Ia этот второй максимум отсутствует. Эти сверхновые отличаются также красным цветом в максимуме блеска, пониженной светимостью и некоторыми спектральными особенностями. Первой такой сверхновой была SN 1991bg, и подобные ей объекты пока называются пекулярными сверхновыми Ia или "сверхновыми типа 1991bg". Еще одна разновидность сверхновых Ia, наоборот, отличается повышенной светимостью в максимуме. Для них характерны меньшие интенсивности линий поглощения в спектрах. "Прототип" для них - SN 1991T.

Сверхновые II типа еще в 70-е годы были разделены по характеру кривых блеска на "линейные" (II-L) и имеющие "плато" (II-P). В дальнейшем стали обнаруживать все больше сверхновых II, показывающих те или другие особенности в кривых блеска и спектрах. Так, по кривым блеска резко отличаются от других сверхновых II типа две самые яркие сверхновых последних лет: 1987A и 1993J. Обе имели два максимума на кривых блеска: после вспышки блеск быстро падал, потом начинал снова расти и лишь после второго максимума начиналось окончательное ослабление светимости. В отличие от сверхновых Ia второй максимум наблюдался во всех диапазонах спектра, причем для SN 1987A он был гораздо ярче первого в более длинноволновых диапазонах.

Среди спектральных особенностей наиболее частым и заметным было присутствие наряду с широкими эмиссионными линиями, характерными для расширяющихся оболочек, также системы узких линий излучения или поглощения. Это явление скорее всего связано с присутствием плотной оболочки, окружающей звезду перед вспышкой, такие сверхновые получили обозначение II-n.

Статистика Сверхновых

Как часто вспыхивают сверхновые и каким образом они распределены в галактиках? На эти вопросы должны дать ответ статистические исследования сверхновых.

Казалось бы, дать ответ на первый вопрос достаточно просто: нужно достаточно продолжительное время наблюдать за несколькими галактиками, подсчитать наблюдавшиеся в них сверхновые и разделить число сверхновых на время наблюдений. Но оказалось, что время, охваченное достаточно регулярными наблюдениями, еще слишком мало для определенных выводов для отдельных галактик: в большинстве наблюдалось только одна или две вспышки. Правда, в некоторых галактиках уже зарегистрировано достаточно большое число сверхновых: рекордсмен - галактика NGC 6946, в которой с 1917 года открыто 6 сверхновых. Однако и эти данные не дают точных данных о частоте вспышек. Во-первых, неизвестно точное время наблюдений этой галактики, а во-вторых, почти одновременные для нас вспышки на самом деле могли быть разделены достаточно большими промежутками времени: ведь свет от сверхновых проходит разный путь внутри галактики, а ее размеры в световых годах намного больше, чем время наблюдений. Пока возможно получить оценку частоты вспышек только для некоторой совокупности галактик. Для этого необходимо использовать данные наблюдений по поиску сверхновых: каждое наблюдение дает некоторое "эффективное время слежения" за каждой галактикой, которое зависит от расстояния до галактики, от предельной звездной величины поиска и от характера кривой блеска сверхновой. Для сверхновых разных типов время наблюдений одной и той же галактики будет разным. Объединяя результаты для нескольких галактик, нужно принимать во внимание их различие по массе и светимости, а также по морфологическому типу. В настоящее время принято нормировать результаты на светимость галактик и объединять данные только для галактик с близкими типами. Последние работы, основанные на объединении данных нескольких программ поиска сверхновых, дали такие результаты: в эллиптических галактиках наблюдаются только сверхновые типа Ia, и в "средней" галактике со светимостью 10 10 светимостей Солнца одна сверхновая вспыхивает примерно раз в 500 лет. В такой же по светимости спиральной галактике сверхновые Ia вспыхивают с лишь немного более высокой частотой, однако к ним добавляются сверхновыые типов II и Ib/c, и общая частота вспышек получается примерно раз в 100 лет. Частота вспышек примерно пропорциональна светимости галактик, то есть в гигантских галактиках она значительно выше: в частности, NGC 6946 - спиральная галактика со светимостью 2.8 10 10 светимостей Солнца, следовательно в ней можно ожидать около трех вспышек за 100 лет, и наблюдавшиеся в ней 6 сверхновых можно считать не очень большим отклонением от средней частоты. Наша Галактика поменьше NGC 6946, и в ней можно ожидать одну вспышку в среднем через 50 лет. Однако известно, что за последнее тысячелетие наблюдалось только четыре сверхновых в Галактике. Нет ли здесь противоречия? Оказывается, нет - ведь большая часть Галактики закрыта от нас слоями газа и пыли, и окрестности Солнца, в которых наблюдались эти 4 сверхновые, составляют лишь малую часть Галактики.

Каким образом распределены сверхновые внутри галактик? Конечно, пока можно исследовать только сводные распределения, приведенные к некоторой "средней" галактике, а также распределения относительно деталей структуры спиральных галактик. К этим деталям относятся, в первую очередь, спиральные рукава; в достаточно близких галактиках хорошо видны также области активного звездообразования, выделяемые по облакам ионизованного водорода - области H II, или по скоплениям ярких голубых звезд - OB-ассоциации. Многократно повторяемые по мере увеличения числа открытых сверхновых исследования пространственного распределения дали следующие результаты. Распределения сверхновых всех типов по расстоянию от центров галактик мало различаются между собой и сходны с распределением светимости - плотность падает от центра к краям по экспоненциальному закону. Различия между типами сверхновых проявляются в распределении относительно областей звездообразования: если к спиральным рукавам концентрируются сверхновые всех типов, то к областям H II - только сверхновые типов II и Ib/c. Можно сделать вывод, что время жизни звезды, дающей вспышку типа II или Ib/c - от 10 6 до 10 7 лет, а для типа Ia - около 10 8 лет. Однако сверхновые Ia наблюдаются и в эллиптических галактиках, где, как считается, нет звезд моложе 10 9 лет. Этому противоречию возможно два объяснения - или природа вспышек сверхновых Ia в спиральных и в эллиптических галактиках различна, либо в некоторых эллиптических галактиках все-таки продолжается звездообразование и присутствуют более молодые звезды.

Теоретические модели

На основании всей совокупности наблюдательных данных исследователи пришли к выводу, что вспышка сверхновой должна быть последним этапом в эволюции звезды, после которой она перестает существовать в прежнем виде. Действительно, энергия взрыва сверхновых оценивается как 10 50 - 10 51 эрг, что превышает типичные значения гравитационной энергии связи звезд. Освободившейся при вспышке сверхновой энергии более чем достаточно, чтобы полностью рассеять в пространстве вещество звезды. Какие же звезды и когда заканчивают свою жизнь вспышкой сверхновой, какова природа процессов, приводящих к такому гигантскому выделению энергии?

Данные наблюдений показывают, что сверхновые делятся на несколько типов, различающихся по химическому составу оболочек и их массам, по характеру выделения энергии и по связи с различными типами звездных населений. Сверхновые II типа явно связаны с молодыми, массивными звездами, в их оболочках в большом количестве присутствует водород. Поэтому их вспышки считают конечной стадией эволюции звезд, начальная масса которых составляет больше 8-10 масс Солнца. В центральных частях таких звезд энергия выделяется при реакциях ядерного синтеза, начиная от самой простой - образования гелия при слиянии ядер водорода, и заканчивая образованием ядер железа из кремния. Ядра железа являются самыми стабильными в природе, и выделения энергии при их слиянии не происходит. Таким образом, когда ядро звезды становится железным, выделение энергии в нем прекращается. Ядро не может сопротивляться гравитационным силам и быстро сжимается - коллапсирует. Процессы, происходящие при коллапсе, еще далеки от полного объяснения. Однако известно, что если все вещество ядра звезды превращается в нейтроны, то оно может противостоять силам притяжения. Ядро звезды превращается в "нейтронную звезду" и коллапс останавливается. При этом выделяется огромная энергия, поступающая в оболочку звезды и заставляющая ее начать расширение, которое мы и видим как вспышку сверхновой. Если эволюция звезды до этого происходила "спокойно", то ее оболочка должна иметь радиус в сотни раз превосходящий радиус Солнца, и сохранить достаточное количество водорода для объяснения спектра сверхновых II типа. Если же большая часть оболочки была потеряна при эволюции в тесной двойной системе или каким-либо другим образом, то линий водорода в спектре не будет - мы увидим сверхновую типа Ib или Ic.

В менее массивных звездах эволюция протекает по-другому. После горения водорода ядро становится гелиевым, и начинается реакция превращения гелия в углерод. Однако ядро не нагревается до такой высокой температуры, чтобы начались реакции синтеза с участием углерода. Ядро не может выделять достаточно энергии и сжимается, однако в этом случае сжатие останавливают электроны, находящиеся в вешестве ядра. Ядро звезды превращается в так называемый "белый карлик", а оболочка рассеивается в пространстве в виде планетарной туманности. Индийский астрофизик С.Чандрасекхар показал, что белый карлик может существовать, только если его масса меньше примерно 1.4 массы Солнца. Если белый карлик находится в достаточно тесной двойной системе, то может начаться перетекание вещества с обычной звезды на белый карлик. Масса белого карлика постепенно увеличивается, и когда она превосходит предельную - происходит взрыв, при котором идет быстрое термоядерное горение углерода и кислорода, превращающихся в радиоактивный никель. Звезда полностью разрушается, а в расширяющейся оболочке идет радиоактивный распад никеля в кобальт и далее в железо, который дает энергию для свечения оболочки. Таким образом вспыхивают сверхновые типа Ia.

Современные теоретические исследования сверхновых - это преимущественно расчеты на самых мощных компьютерах моделей взрывающихся звезд. К сожалению, пока не удается создать модель, которая от поздней стадии эволюции звезды привела бы к вспышке сверхновой и к ее наблюдаемым проявлениям. Однако существующие модели достаточно хорошо описывают кривые блеска и спектры подавляющего большинства сверхновых. Обычно это модель оболочки звезды, в которую "вручную" вкладывается энергия взрыва, после чего начинается ее расширение и разогревание. Несмотря на большие трудности, связанные со сложностью и многообразием физических процессов, в последние годы в этом направлениии исследований достигнуты большие успехи.

Влияние Сверхновых на окружающую среду

Вспышки сверхновых оказывают сильное и многообразное влияние на окружающую межзвездную среду. Сбрасываемая с огромной скоростью оболочка сверхновой сгребает и сжимает окружающий ее газ. Возможно, это может дать толчок образованию новых звезд из облаков газа. Энергия взрыва так велика, что происходит синтез новых элементов, в особенности более тяжелых чем железо. Обогащенное тяжелыми элементами вещество разбрасывается взрывами сверхновых по всей галактике, в результате звезды, образовавшиеся после вспышек сверхновых, содержат больше тяжелых элементов. Межзвездная среда в "нашей" области Млечного пути оказалась настолько обогащенной тяжелыми элементами, что стало возможным возникновение жизни на Земле. Сверхновые несут за это прямую ответственность! Сверхновые, по всей видимости, порождают и потоки частиц с очень высокой энергией - космические лучи. Эти частицы, проникая на поверхность Земли сквозь атмосферу, могут вызывать генетические мутации, благодаря которым происходит эволюция жизни на Земле.

Сверхновые рассказывают нам о судьбе Вселенной

Сверхновые, и в особенности сверхновые типа Ia, являются одними из самых ярких звездообразных объектов во Вселенной. Поэтому даже очень далекие сверхновые можно исследовать с имеющимся в настоящее время оборудованием.

Многие сверхновые Ia были открыты в достаточно близких галактиках, расстояние до которых можно определить несколькими способами. Наиболее точным в настоящее время считается определение расстояний по видимому блеску ярких переменных звезд определенного типа - цефеид. С помощью Космического телескопа им. Хаббла было открыто и исследовано большое количество цефеид в галактиках, удаленных от нас на расстояние до примерно 20 мегапарсек. Достаточно точные оценки расстояний до этих галактик позволили определить светимость сверхновых типа Ia, которые в них вспыхивали. Если считать, что далекие сверхновых Ia имеют в среднем такую же светимость, то по наблюдаемой звездной величине в максиуме блеска можно оценить расстояние до них.

Их возникновение - это довольно редкое космическое явление. В среднем в доступных наблюдению просторах Вселенной вспыхивает три сверхновых в столетие. Каждая такая вспышка представляет собой гигантскую космическую катастрофу, при которой выделяется невероятно много энергии. По самой грубой оценке такое количество энергии могло бы образоваться при одновременном взрыве многих миллиардов водородных бомб.

Достаточно строгая теория вспышек сверхновых пока отсутствует, но ученые выдвинули любопытную гипотезу. Они предположили, на основании сложнейших расчетов, что в ходе альфа-синтеза элементов ядро продолжает сжиматься. Температура в нем достигает фантастической цифры - 3 миллиарда градусов. При таких условиях в ядре значительно ускоряются различные ; в результате выделяется много энергии. Быстрое сжатие ядра влечет за собой столь же быстрое сжатие оболочки звезды.

Она тоже сильно разогревается, и протекающие в ней ядерные реакции, в свою очередь, сильно ускоряются. Таким образом буквально в считанные секунды выделяется громадное количество энергии. Это приводит к взрыву. Конечно, такие условия достигаются далеко не всегда, и потому сверхновые вспыхивают довольно редко.

Такова гипотеза. Насколько ученые правы в своих предположениях, покажет будущее. Но и настоящее привело исследователей к совершенно поразительным догадкам. Астрофизические методы позволили проследить, как уменьшается светимость сверхновых. И вот что выяснилось: в первые несколько дней после взрыва светимость уменьшается очень быстро, а затем это уменьшение (в течение 600 дней) замедляется. Причем каждые 55 дней светимость ослабевает ровно вдвое. С точки зрения математики, это уменьшение происходит по так называемому экспоненциальному закону. Хорошим примером такого закона является закон радиоактивного распада. Ученые высказали смелое предположение: выделение энергии после взрыва сверхновой обусловлено радиоактивным распадом изотопа какого-то элемента с периодом полураспада 55 дней.

Но какого изотопа и какого элемента? Эти поиски продолжались несколько лет. «Кандидатами» на роль подобных «генераторов» энергии выступили бериллий-7 и стронций-89. Они распадались наполовину как раз за 55 дней. Но выдержать экзамен им не довелось: расчеты показали, что энергия, выделяющаяся при их бета-распаде, слишком мала. А другие известные радиоактивные изотопы подобным периодом полураспада не обладали.

Новый претендент обнаружился среди элементов, которые на Земле не существуют. Он оказался представителем трансурановых элементов, синтезированных учеными искусственно. Имя претендента - калифорний, его порядковый номер - девяносто восемь. Его изотоп калифорний-254 удалось приготовить в количестве всего лишь около 30 миллиардных долей грамма. Но и этого поистине невесомого количества вполне хватило, чтобы измерить период полураспада изотопа. Он оказался равным 55 дням.

А отсюда возникла любопытная гипотеза: именно энергия распада калифорния-254 обеспечивает в течение двух лет необычайно высокую светимость сверхновой звезды. Распад калифорния происходит путем самопроизвольного деления его ядер; при таком виде распада ядро как бы раскалывается на два осколка - ядра элементов середины периодической системы.

Но каким образом синтезируется сам калифорний? Ученые и здесь дают логичное объяснение. В ходе сжатия ядра, предшествующего взрыву сверхновой, необычайно ускоряется ядерная реакция взаимодействия уже знакомого нам неона-21 с альфа-частицами. Следствием этого оказывается появление в течение довольно короткого промежутка времени чрезвычайно мощного потока нейтронов. Снова возникает процесс нейтронного захвата, но на сей раз уже быстрого. Ядра успевают поглотить очередные нейтроны раньше, чем подвернутся бета-распаду. Для этого процесса неустойчивость трансвисмутовых элементов уже не препятствие. Цепь превращений не порвется, и конец периодической таблицы тоже будет заполнен. При этом, видимо, образуются даже такие трансурановые элементы, которые в искусственных условиях еще не получены.

Ученые подсчитали, что при каждом взрыве сверхновой только калифорния-254 образуется фантастическое количество. Из такого количества можно было бы изготовить 20 шаров, каждый из которых весил бы столько, сколько наша Земля. Какова же дальнейшая судьба сверхновой? Она погибает довольно быстро. На месте ее вспышки остается лишь маленькая очень тусклая звездочка. Она отличается, правда, необычайно высокой плотностью вещества: наполненный им спичечный коробок весил бы десятки тонн. Такие звезды называют « ». Что происходит с ними дальше, мы пока не знаем.

Материя, которая выбрасывается в мировое пространство, может сгуститься и образовать новые звезды; они начнут новый долгий путь развития. Ученые сделали пока лишь общие грубые мазки картины происхождения элементов, картины работы звезд - грандиозных фабрик атомов. Быть может, это сравнение в общем передает суть дела: художник набрасывает на холсте лишь первые контуры будущего произведения искусства. Уже ясен основной замысел, но многие, в том числе и существенные, детали еще приходится лишь угадывать.

Окончательное решение проблемы происхождения элементов потребует колоссального труда ученых различных специальностей. Вероятно, многое, что сейчас нам представляется несомненным, на самом деле окажется грубо приблизительным, а то и вовсе неверным. Наверное, ученым придется столкнуться с закономерностями, до сих пор нам неизвестными. Ведь для того чтобы разобраться в сложнейших процессах, протекающих во Вселенной, бесспорно, понадобится новый качественный скачок в развитии наших представлений о ней.