Теория динамических систем. Динамические законы и теории

Вероятность – отношение числа возможных случаев, благоприятствующих данному событию, к числу всех возможных.

Случайность – событие, которое может с определенной долей вероятности произойти, или не произойти.
Статистическая закономерность – законы средних величин, действующие в области массовых явлений, либо при взаимодействии очень большого количества тел.
Среднее значение - числовая характеристика множества чисел или функций; - некоторое число, заключенное между наименьшим и наибольшим из их значений .
Молекулярно-кинетическая теория – теория, основанная на представлении, что все тела состоят из атомов и молекул, находящихся в непрерывном движении и взаимодействии друг с другом.

Распределение (Максвелла) молекул по скоростям :

здесь - вероятность обнаружения молекулы в бесконечно малом прямоугольном параллелепипеде в пространстве скоростей, изображенном на рис. 2.3. Другими словами, это вероятность того, что молекула имеет проекцию скорости на ось х в интервале от v х до v х + dv х и в подобных же интервалах для значений v y и v z .

В распределении (2.12) А - константа, выражение для которой можно найти из условия нормировки:

Распределение (2.12а) принято называть распределением Максвелла по компонентам скоростей.

Статистическое описание состояния - основывается на применении законов теории вероятностей , а в качестве основной применяемой функции выступает функция распределения . При этом не требуется знания характера соударения микрочастиц, их начальных условий движения и точного решения уравнений динамики всех микрочастиц. В этом случае обычно ограничиваются нахождением функции распределения одной микрочастицы и считают, что функции распределения всех микрочастиц идентичны. Все наблюдаемые параметры макросистемы определяются путем нахождения средних значений динамических переменных микрочастиц.
Флуктуация - случайные отклонения от среднего значения физических величин, характеризующих систему из большого числа частиц; вызываются тепловым движением частиц или квантово механическими эффектами. Примером термодинамических флуктуаций являются флуктуации плотности вещества в окрестностях критических точек, приводящих, в частности, к сильному рассеянию света веществом и потери прозрачности.

Флуктуации, вызванные квантовомеханическими эффектами присутствуют даже при температуре абсолютного нуля. Они принципиально неустранимы.

Квантово механическое состояние - определяется значением энергии системы; минимальное значение энергии называется основное состояние.
Волновая функция – функция состояния системы, являющаяся решением уравнения Шредингера; физического смысла не имеет.
Статистический характер квантового описания природы - в классической механике заданием состояния, в котором находится данная система, однозначно определяются значения всех связанных с нею механических величин, ибо всякая такая величина представляется как функция гамильтоновых переменных, задание значений которых и равносильно заданию состояния системы. В квантовой механике заданием состояния системы механические величины определяются лишь как случайные величины; задание состояния системы определяет собою не значения, а законы распределения связанных с нею механических величин. Эта принципиально статистическая черта квантовой механики.
Динамическая теория – теория изучения сложных динамических систем, которые проявляют признаки хаотического поведения.
Статистическая теория - предсказывает только вероятности разных результатов измерений и ничего не знает о том, как все происходило на самом деле.
Фундаментальная теория
- в современной физике имеют дело не с разрозненной совокупностью множества не связанных или почти не связанных друг с другом законов, а с немногим числом фундаментальных законов или фундаментальных физических теорий, охватывающих огромные области явлений. В этих теориях в наиболее полной и общей форме отражаются объективные процессы в природе.
Примеры фундаментальных динамических теорий: механика, электродинамика, термодинамика, теория относительности, эволюционная теория Ламарка, теория химического строения, молекулярно-кинетическая теория, квантовая механика и другие
квантовые теории, эволюционная теория Дарвина, молекулярная генетика.
Принцип соответствия: статистические и динамические теории – каждая более глубокая теория содержит, при некотором предельном переходе, ранее ей предшествующую, не столь глубокую (например, теория относительности Эйнштейна при малых скоростях переходит в классическую механику Ньютона).
Динамические теории как приближение и упрощение более точных статистических теорий - динамические законы отображают объективные закономерности в форме однозначной количественной связи физических величин, характеризующих причины, условия и следствия.Статистические закономерности обеспечивают более общее описание природы, диалектично отражая роль необходимого и случайного в природе, поэтому динамические законы можно рассматривать как упрощение, первое приближение к анализу различных процессов.

Тема 4.03. Корпускулярно-волновой дуализм. Соотношения
неопределенностей

Волновые свойства света:

Интерференция – явление наложения в пространстве однонаправленных когерентных волн, при котором в одних точках пространства волны гасят друг друга, в других – усиливают;

Дифракция – свойство волн огибать препятствия (заходить в область геометрической тени);

Поляризация - выделение некоторого преимущественного направления колебаний в бегущей волне. Такая волна называется поляризованной. Если это световая волна, то при поляризации вектор напряженности электрического поля Е в ней колеблется по определенному закону. Если он колеблется вдоль плоскости проходящей через луч, то такая волна называется плоско или линейно поляризованной .
Корпускулярные свойства света:

Фотоэффект – явление выбивания электронов с поверхности металла при падении на эту поверхность света (внешний фотоэффект). Различают еще и внутренний фотоэффект – это повышение электропроводности полупроводников при падении на них света.
Корпускулярно-волновой дуализм как всеобщее свойство материи - для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна - частица.Корпускулярно-волновой дуализм в современной физике стал всеобщим. Любой материальный объект характеризуется наличием как корпускулярных, так и волновых свойств.
Де Бройль: общая идея и формула связи между импульсом частицы и ее
длиной волны -
де Бройль утверждал, что волновые свойства, наряду с корпускулярными, присущи всем видам материи: электронам, протонам, атомам, молекулам и даже макроскопическим тела, и предложил формулу для длины волны тела массы m: λ = h/mv, где h – постоянная Планка, m – масса тела, v – скорость тела.

Волновые свойства частиц. Дифракция электронов. Электронный микроскоп: Согласно де Бройлю, с каждым микрообъектом связаны, с одной стороны, корпускулярные характеристики – энергия E и импульс p, а с другой стороны, волновые характеристики – частота ν и длина волны λ.

Корпускулярные и волновые характеристики микрообъектов связаны такими же количественными соотношениями, как и у фотона:

английский физик Дж. Томсон (сын Дж. Томсона, открывшего за 30 лет до этого электрон) получил новое подтверждение гипотезы де Бройля. В своих экспериментах Томсон наблюдал дифракционную картину, возникающую при прохождении пучка электронов через тонкую поликристаллическую фольгу из золота. При взаимодействии электронов с такими структурами возникает рассеяние электронов в преимущественных направлениях в соответствии с предсказываемыми теорией соотношениями. Регистрируя рассеянные электроны (например, фотографируя их), можно получать информацию об атомной структуре вещества. Это явление используется в электронных микроскопах.
Мысленный эксперимент - «микроскоп Гейзенберга» - с точки зрения Гейзенберга, чем больше будет уточнено определение положения, тем хуже будет определено состояние движения. Обратно, чем лучше определено состояние движения частицы, тем ближе будет сопряженная волна к плоской монохроматической волне с постоянной амплитудой. Следовательно, чем точнее будет определено состояние движения, тем с меньшей уверенностью может оценить положение частицы.
Соотношение неопределенностей координата-импульс (скорость) – чем точнее определен импульс частицы, тем большая неопределенность в ее координате и наоборот.
Соотношение неопределенностей энергия-время – чем точнее необходимо измерить энергию частицы, тем больший промежуток времени на это потребуется и наоборот, чем меньше времени затрачено на измерение, тем большая неопределенность в определении энергии частицы.
Соотношения неопределенностей как следствие невозможности
невозмущающих измерений -
длительность измерения Т не должна, очевидно, превышать время жизни Δt микрообъекта на данном уровне: Т < Δt.
Соотношения неопределенностей как результат квантовых флуктуаций
- флуктуации, вызванные квантовомеханическими эффектами присутствуют даже при температуре абсолютного нуля. Они принципиально неустранимы. Непосредственно наблюдаемы квантовомеханические флуктуации для заряда, прошедшего через квантовый точечный контакт - квантовый дробовой шум.
Экспериментальные доказательства сложной структуры вакуума: эффект
Казимира, рождение электрон-позитронных пар в электрическом поле -
Что произойдет если Вы возьмете два зеркала и установите их зеркальными сторонами друг к другу в пустом пространстве? Зеркала притягиваются друг к другу из-за того, что между ними находится вакуум. Это явление было впервые предсказано немецким физиком-теоретиком Генрихом Казимиром в 1948 году, когда он работал в исследовательском центре Philips Research Laboratories в Эйндховене (Eindhoven) над коллоидными растворами. Это явление получило название эффекта Казимира, а сила, возникающая между зеркалами - сила Казимира. Законом сохранения импульса запрещено рождение в вакууме реальной электрон-позитронной пары (или пары любых других массивных частиц) одним фотоном, поскольку единичный фотон в любой системе отсчёта несёт конечный импульс, а электрон-позитронная пара в своей системе центра масс обладает нулевым импульсом. Однако виртуальные пары любых частиц могут появляться и в таком процессе; в частности, именно рождение виртуальных пар в вакууме обуславливает такие эффекты, как поляризация вакуума, лэмбовский сдвиг уровней или излучение Хокина. В ускоренной системе отсчёта виртуальная пара может обратиться в реальную.

Тема 4.04. Принцип дополнительности
Корпускулярно-волновой дуализм –
наличие корпукулярных свойств у физических полей и волновых свойств у элементарных частиц.

Принцип дополнительности в квантовой механике – при измерении могут быть установлены, с точностью, допускаемой принципом (соотношением неопределенности Гейзенберга), либо энергия и импульс микрообъекта, либо его пространственные координаты и время (пространственно – временное поведение системы).

Измерение в квантовой механике как результат взаимодействия микрообъекта с макроприбором - невозможность установления твердых границ между объектом и прибором лишает смысла классическое представление об абсолютно фиксированном различии между прибором и объектом.

Невозможность невозмущающих измерений - Квантовый микрообъект проявляется при взаимодействии с классическим прибором. Результат такого взаимодействия - экспериментальные данные, которые объясняются на основе тех или иных теоретических предпосылок и на базе которых, в свою очередь, делаются косвенные заключения о свойствах объекта, уже предсказанных теорией. И так как свойства микрообъекта обнаруживаются через взаимодействие его с классическим прибором, то их проявление обусловливается устройством прибора и создаваемыми внешними условиями
Неотделимость наблюдателя от наблюдаемого объекта - наблюдатель получает информацию не только о физическом объекте как таковом, но одновременно и о влиянии наблюдательного средства на этот объект в процессе измерения.

Возможные значения физических величин: дискретный и непрерывный спектр - в квантовой механике подавляющее число физических величин могут иметь неопpеделенное численное значение. Пеpвое, что необходимо установить, это спектpвозможных значений неопpеделенной величины (он иногда может быть непpеpывным , иногда - дискpетным ). Законом распределения дискретной случайной величины называют соответствие между ее возможными значениями и вероятностями их появления. Закон распределения можно задать таблично, аналитически (в виде формулы) и графически (в виде многоугольника распределения). Способ описания распределения случайной величины в виде таблицы, в виде формулы или графически применим только для дискретных случайных величин

Физические величины, имеющие и не имеющие определенное значение в данном состоянии -
в квантовой механике разделяют уровень наблюдаемых фактов (результатов измерений и реальных экспериментов) и уровень мысленных экспериментов, которые хотя и не выдают численные значения физических величин, но позволяют понять, что происходит на "самом деле".Для каждого из уровней используются соответствующие физические величины.
Принцип дополнительности в широком смысле как необходимость несовместимых, но взаимодополняющих точек зрения для полного понимания предмета или процесса

Вхождение субъекта в квантовую реальность приводит к распаду физической картины микромира на взаимоисключающие, волновые и корпускулярные стороны. Так как эти описания относятся к одной реальности и реализуют различные свойства одного и того же объекта, то необходимо введение принципа дополнительности, чтобы рассматривать несовместимые стороны как дополняющие друг друга в описании одного и того же бытия.

Тема 4.05. Принцип возрастания энтропии

Формы энергии: тепловая, химическая, механическая, электрическая. Энергия – наиболее общая единая мера всех форм движения и взаимодействия материи. Химическая энергия – энергия, выделяющаяся или поглощающаяся в химических реакциях в результате восстановления или разрушения химических связей между атомами и молекулами. Тепловая энергия – энергия хаотического (поступательного, вращательного, колебательного) движения молекул. Механическая энергия – сумма кинетической и потенциальной энергий тела или системы тел. Электрическая энергия – энергия, заключенная в электрическом и магнитном полях, эта энергия переносится в пространстве магнитными волнами.

Первый закон термодинамики - закон сохранения энергии при ее превращениях, или первое начало термодинамики: количество теплоты, сообщенное системераспределяется на увеличение внутренней энергии системы и на совершение работы силами, приложенными со стороны системы к внешним телам.

Замкнутая (изолированная) система и незамкнутая (открытая) система - система, не обменивающаяся с окружающей средой энергией, материей, импульсом, моментом импульса и информацией.
Термодинамическое равновесие. Система в состоянии равновесия характеризуется тем, что в ней не происходит никаких термодинамических процессов, отдельные макроскопические части системы покоятся друг относительно друга, а макроскопические параметры системы (температура, давление) одинаковы для всех частей системы. Достигнув этого состояния, система не может без внешнего воздействия выйти из него.

Второй закон термодинамики как принцип возрастания энтропии в замкнутых системах. В формулировке немецкого физика Клаузиуса (1822 – 1888 г.г.) энтропия замкнутой (изолированной) системы возрастает и достигает максимума в состоянии термодинамического равновесия.

Энтропия как физический индикатор направления времени. Энтропия есть функция состояния системы. Любая изолированная система изменяется в направлении «забывания» начальных условий и перехода в макроскопическое состояние, характеризующимся большими хаосом и симметрией, что соответствует возрастанию энтропии. Таким образом, возрастание энтропии есть некая «стрела времени»: для изолированной системы будущее всегда расположено в направлении возрастания энтропии.

Обратимые и необратимые процессы. Обратимым называется процесс, который может идти как в прямом, так и в обратном направлениях, причем по возвращении системы в исходное состояние не происходит никаких изменений. Любой другой процесс – необратимый. В механистической картине мира рассматриваются только обратимые процессы. Реальные самопроизвольные процессы всегда необратимы.

Энтропия как измеряемая физическая величина (приведенная теплота). Энтропия как функция состояния системы может быть рассчитана как интеграл т своего бесконечно малого приращения, определяемого отношением бесконечно малого количества тепла, полученного или отданного системой при данной температуре к этой температуре (приведенная теплота).

Изменение энтропии тел при теплообмене между ними. Второй закон термодинамики как принцип направленности теплообмена (от горячего к холодному). Согласно Клаузиусу невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому: это означает, что возможны самопроизвольные процессы, протекающие только в одном направлении – передача тепла от более горячих тел к менее горячим, что сопровождается возрастанием энтропии.

Качество (ценность) энергии. Высококачественные формы энергии: механическая, электрическая. Низкокачественная форма энергии: теплота. Качество (ценность энергии) определяется возможностью превращения ее в механическую работу. Так, например, при падении на землю тела, обладавшего кинетической и потенциальной, т.е. механической энергией, выделится тепло, которое не может превратиться вновь в механическую энергию, поэтому тепло рассматривается как энергия более низкого качества, чем энергия механическая, химическая или электрическая.

Понижение качества тепловой энергии с понижением температуры. Поскольку самопроизвольно энергия передается только от тела более нагретого (нагревателя) к менее нагретому (холодильнику), возможность совершения механической работы в этом процессе тем больше, чем выше температура нагревателя по отношению к температуре холодильника, в связи с чем качество тепловой энергии более горячего нагревателя выше, чем у менее горячего.

Энтропия как мера некачественности энергии. Всякое упорядоченное движение и связанная с ним энергия более качественна, чем неупорядоченная энергия, например, энергия теплового хаотического движения молекул. Поскольку энтропия есть мера хаоса, т.е. беспорядка в системе, а ее увеличение соответствует росту этого беспорядка, можно сказать, что энтропия есть мера некачественности энергии.

Второй закон термодинамики как принцип неизбежного понижения качества энергии. Увеличение беспорядка, т.е. возрастание энтропии в изолированных системах, неизбежное в соответствии со вторым началом термодинамики, есть принцип неизбежного понижения качества энергии. В изолированных системах происходит своего рода обесценивание энергии: все виды энергии в конечном счете превращаются в тепловую энергию, которая сама по себе не может не может превратиться в механическую энергию.

Энтропия как мера молекулярного беспорядка. Благодаря работам великого австрийского физика Больцмана понятие энтропии удалось свести с макроскопического на микроскопический уровень. По Больцману энтропия пропорциональна логарифму термодинамической вероятности, которая определяется как число микросостояний системы, которыми реализуется данное макросостояние системы. Очевидно, что чем больше упорядоченность в распределении элементов, образующих систему, тем меньшим числом микросостояний может быть реализовано данное макростостояние. Например, равномерному распределению молекул газа в объеме соответствует максимальное число возможных комбинаций, т.е перестановок этих молекул, не изменяющих равномерности их распределения.

Статистическая природа второго начала термодинамики. В соответствии с определением энтропии по Больцману второе начало термодинамики можно сформулировать следующим образом: энтропия изолированной системы при протекании необратимых процессов возрастает, ибо система, предоставленная самой себе, переходит из менее вероятного состояния в более вероятное. Энтропия системы в состоянии равновесия максимально и постоянно.

Второй закон термодинамики как принцип нарастания беспорядка и разрушения структур. Разрушение существующих структур – одна из форм нарастания беспорядка в системе, т.е. проявление принципа нарастания беспорядка.

Энтропия как мера отсутствия информации. Обмен информацией (в самом широком смысле – сведениями, передаваемыми от одних объектов к другим) современной наукой рассматривается как одно из условий открытости сложных систем. В отсутствие информации извне управление системой, что тождественно поддержанию или усилению порядка в системе, невозможно, поэтому отсутствие или дефицит информации приводит к возрастанию энтропии в системе.

Основной парадокс эволюционной картины мира: закономерность эволюции на фоне всеобщего роста энтропии. Энтропия открытой системы: производство энтропии в системе, входящий и выходящий потоки энтропии. Термодинамика жизни: добывание упорядоченности из окружающей среды. Термодинамика Земли как открытой системы. Рассматривая Землю как изолированную систему, что изначально неверно, можно предположить, что в этой системе возможны только процессы деградации, застоя и нарастания хаоса. В тоже время, очевидны процессы эволюции живой природы, а также прогресс цивилизации. Разрешение этого парадокса следует из рассмотрения земной системы как системы сложной, состоящей из отдельных, но взаимодействующих подсистем: живая природа – неживая природа, человек – окружающая среда и т.п. В такой сложной системе уменьшение энтропии, т.е. беспорядка в одной подсистеме может происходить за счет увеличения энтропии в другой подсистеме. Вся картина усложняется при учете того обстоятельства, что человек, природа, вся планета Земля являются частью космоса и в этом смысле Земля – открытая система, все взаимодействия которой с внешним миром еще не полностью изучены.

Понятия системы, основные характеристики системы.

Система – это совокупность элементов, находящихся во взаимодействии и связаны определенной структурой.

Базовый блок любой системы – составляющие ее элементы, каждый элемент характеризуется набором состояний, в которой он может находиться.

Схема функционирования элемента системы:

Для многих систем характерен принцип обратной связи – выходной сигнал может использоваться для коррекции управления.

S(t) – состояние элемента в момент t.

U(t) – управление элементом в момент t.

a(t) – внешняя среда элемента в момент t.

E(t) – случайные воздействия элемента в момент t.

Y(t) – выходной сигнал элемента в момент t.

В общем случае описание функционирования элемента системы производится при помощи системы дифференциальных или разностных уравнений следующего вида:

Y(t) =f(S(t), S(t-1), …,U(t),U(t-1),…,a(t),a(t-1),…,E(t),E(t-1),…)

(Y(t) = g (S(t), a(t), E(t)) (1)

Примеры структуры системы:

    линейная (последовательная):

    иерархическая (древовидная):

    радиальная (звездообразная):

    сотовая или матричная:

    многосвязная – с произвольной структурой.

При анализе динамических систем рассмотрим решение следующих задач:

    Задача наблюдения – состоит в определении состояния системы в момент времени S(t) по данным выходных величин (о их поведении) в будущем.

Найти S(t) , зная,
для системы с дискретным временем.

для систем с непрерывным временем.

    Задача идентификации – в определении текущего состояния S(t) по данным о поведении выходных величин в прошлом.

3. Задачи прогнозирования – определение будущих состояний по данным ткущих и

прошлых значений.

Найти S (t+1), S (t+2),… зная

    Задача поиска управления – найти управляющую последовательность U(t), U(t+1),…, U(S), S > t, которая приводит систему из состояния S(t) = X в состояние S(S) = Y.

    Задача синтеза максимального управления – состоит в определенной оптимальной последовательности управляющих воздействий U*(t) решающий задачу 4 и максимальную целевую функцию или функциональную:

F(S(t)), t = 0,1,2,…

Типы систем:

    По наличию случайных факторов:

Детерминированные

Стохастические – влиянием случайных факторов нельзя принебреч.

2. По учету фактора времени:

Системы с непрерывным временем

Системы с дискретным временем

3. По влиянию прошлых периодов:

Марковские системы – для решения 1 и 2 задач нужна информация только за непосредственно предшествующий или последующий период. Для Марковской систем уравнение (1) принимает вид: G(S(t), S(t-1), U(t), U(t-1), a(t), a(t-1), E(t), E(t-1)) = 0

Немарковские.

Некоторые общие свойства систем:

    причинность – возможность предсказывать последствия некоторых последствий в будущем. Част. случай: предопределенность системы означает, что в сущности такие состояния, для которых вся будущая эволюция системы может быть вычислена на базе прошлых наблюдений.

    управляемость – состоит в том, что подходящим выбором входного воздействия U можно добиться любого входного сигнала Y.

    устойчивость – система является устойчивой, если при достаточно малых изменениях условий ее функционирования поведение системы существенно не изменится.

    инерционность – возникновение запаздываний в системе при реакции (запаздывания) на изменение управления и (или) внешней среды.

    адаптивность – способность системы изменять поведения и (или) свою структуру в ответ на изменение внешней среды.

Детерминированные динамические системы с дискретным временем.

Многие приложения в экономике требуют моделирования систем во времени.

Состояние системы в момент времени t описывается мерным вектором X(t).

X(t) = ….. , X (t) R n (R – множество всех вещественных чисел)

t

Эволюция системы со временем описывается функцией

G (X 0 , t, ) , где

X 0 – начальное состояние системы;

t – время;

- вектор параметров.

Функция g(*) называют также переходной функцией

Функция g(*) – это правило, описывающее текущее состояние как функцию от времени, начальных условий и параметров.

Например: X t = X 0 (1+) t = g (X 0 , t, )

Функция g(*) как правило не известна. Обычно она задана неявно как решение системы разностных уравнений.

Разностное уравнение или система уравнений – это уравнения в следующей форме: F (t, X t , X t +1 , …, X t + m , ) = 0 (1), где

X t – состояние системы в момент времени t.

Решение уравнения (1) – это последовательность векторов

X t = X 0 , X 1 ,…,

Обычно предполагается, что уравнение (1) можно решить аналитически относительно X t + m и переписать в форме так называемых уравнений – состояний:

X t+m = f (t, X t , X t+1 , …,X t+m-1 , )(2)

Например:

X t +2 = X t + X t +1 /2 + t

Любую систему представляют в форме (2) всегда можно?

Разностное уравнение (2) называется линейным, если F(*) является линейной фуекцией переменных состояний (не обязательно линейно относительно )

В уравнениях (1) и (2) величина m называется порядком системы не является серьезным ограничением, так как системы более высокого порядка путем введения дополнительных переменных и уравнений.

Пример: X t = f (X t -1 , Y t -1) – система 2-го порядка

Введем Y t = X t -1

X t = f(X t -1 , Y t -1)

Таким образом, мы будем рассматривать только системы 1-го порядка следующего вида:

X t -1 = f(t, X t , ) (3)

Уравнение (3) называется автономным, если t не входит в него отдельным аргументом.

Пример:

Рассмотрим динамику основных фондов на предприятии

K t – стоимость основных фондов предприятия в период t.

- норма амортизации, то есть % основных фондов, которые изъяли на предприятии за год.

I t = инвестиции в основные фонды.

K t +1 = (1 - )K t + I t – уравнение 1-го порядка, линейное, если I t = I, тогда

K t +1 = (1 - )K t + I – уравнение автономное

Если I t = I(t) – неавтономное (зависит от t)

Решение уравнения (3) – это последовательность векторов состояния {X t }, удовлетворяющих уравнению (3) для всех возможных состояний. Эта последовательность называется траекторией системы. Уравнение (3) показывает, как состояние системы изменяется от периода к периоду, а траектория системы дает ее эволюцию как функцию начальных условий и состояния внешней среды .

Если известно начальное состояние X 0 , легко получить последовательность решений путем итеративного применения отношения (3), получим переходную функцию следующим образом:

X t +1 = f (t, X t , )

X 1 = f (0, X 0 , ) = g (0, X 0 , )

X 2 = f (1, X, ) = f (1; f (0, X 0 , );) = g (1, X 0 , )

X t+1 = f (t, X t , ) = f (t, g, (t – 1, X 0 , ),) = g (t, X 0 , )

Если f (*) однозначная, всюду определенна функция, то существует уникальное решение уравнения (3) для любого X 0 .

Если функция имеет вид f (t, X t , ) = / X t – не всюду опрделенная.

Если f (*) непрерывная дифференциальная функция, то решение также будет гладким относительно и X 0

Полученное решение зависит от начального состояния X 0 .

Задача с граничным условием состоит из уравнения (3) и граничного условия, задаваемого в формуле:

X s = X s (4)

Если в уравнении (4) – S = 0 , то оно называется начальным состоянием.

Уравнение (3) имеет много решений, а уравнение (3) + (4) – система – единственное решение, поэтому различают общее и частное решение разностного уравнению (3):

X t g = X(t, c, ) = {X t (X t +1 = f (t, X t , ))} , где параметр е индексирует частное решение.

X t – размер вклада в момент t

Z - % я ставка

X t +1 = X t (1+ z) ; X 0 = …

X 1 = X 0 (1 + z)

X 2 = X 1 (1 + z) = X 0 (1 + z) 2 = g (X 0 , t, z) , где t = 2

Если можно найти общее решение системы (3) . у нас будет полная информация о поведении системы со временем, будет легко определить, как система реагирует на изменение параметров.

К сожалению, общее решение существует только для определенных классов l – го порядка (в частности для линейных систем)

Автономные системы

Поведение автономных систем задается разностным уравнением

X t +1 = f (X t , ) (1)

Автономные системы моделируют ситуации, где структура системы остается неизменной со временем. Это дает возможность использовать для анализа графический метод.

X t =1 = f (t, X t , )

X t = X t +1 – X t = f (t, X t , ) - X t = d (t, X t , ) (2)

Функция d (*) показывает на сколько изменится состояние системы от периода к периоду. В каждой точке X t можно сопоставить вектор X t в соответствующем уравнении (2) Функция d (*) в этом контексте называется векторным полем

X 0 /t = 0

Для автономных систем
и

В автономных системах все системы, попавшие когда-либо в т. Х 0 в последствии следуют одной и той же траекторией. В неавтономных системах поведение зависит также и от того, когда система попала в т. Х 0.

При начальном условии Х 0 для автономных систем применим уравнение (1):

дважды последовательно примененная.

В выше приведенной системе f t означает результат t-кратного итеративного применения функции f () к своему аргументу. Функция f t показывает, куда перейдет система за t периодов из начального состояния.

X t – куда перейдет система из т. Х 0 за t периодов времени.

Функция f t иногда называется потоком системы.

Устойчивые состояния. Периодические равновесия. Стабильность .

С течением времени система переходит к устойчивому состоянию. Поэтому нас будет интересовать асимптотическое поведение системы при t → ∞.

Рассмотрим систему

Следовательно, если
существует, то
.

Точка Х, удовлетворяющая уравнению
называется неподвижной точкой отображения
.

Точка называется в контексте динамических систем устойчивым состоянием или стационарным состоянием.

Неподвижные точки широко используются для изучения долговременного поведения динамических систем.

если
, то 1 в противном случае 0

Теория устойчивости Ляпунова

Точка называется стабильной по Ляпунову, если для любого числа
существует такое число,
, что из условия
для всех
.

–длина вектора на плоскости.

–равновесное состояние.

–норма вектора Х.

Точка будет стабильной по Ляпунову в том случае, когда система один раз попав в окрестность точкии в дальнейшем останется в окрестности.

Точка называется асимптотически устойчивой по Ляпунову если:


Для асимптотически устойчивых систем с течением времени система подходит все ближе и ближе к своему равновесному состоянию.

Система ведет себя так:

–поток системы

–куда перейдет система через к шагов

Периодическим решением динамической системы
называется решение в форме
, где р – период системы или период траектории.

Таким образом, периодическое решение является неподвижной точкой отображения
.

Неподвижная точка

Проверим, есть ли неподвижная точка
:

любая точка является неподвижной.

Скалярные линейные системы

Скалярные линейные системы имеют форму:
(1)

–уравнение, подданное в момент t.

Если в уравнении (1)
, то
, то оно называется однородным.

Однородные линейные системы

Для скалярных систем удобно анализировать поведение системы при помощи фазовой диаграммы. Фазовая диаграмма – это график зависимости

Случай 1. 0

Является аналитически стабильной

–линейная, если а=1, под 45 0 – угол наклона.

Для 0

Случай 2. -1

Затухающие колебания

Случай 3. а>1

Случай 4. а<-1

Случай 5. а = 1

Случай 6. а = 0

Случай 7. а = -1 x t+1 = -x t

Если
, то

, то

Общее решение однородных линейных систем имеет вид:

При
,
,

Неоднородные линейные системы первого порядка

(1)

–управление

При анализе неоднородных систем важную роль играет принцип «суперпозиции».

Он заключается в том, что общее решение уравнения (1) может быть записано в форме уравнения:

(2)

где – общее решение однородного уравнения (1):
и называется комплементарной функцией.

–любое частное решение неоднородного уравнения (1).

Автономное уравнение (1)

1.

2.

Доказательство:

Если – решение уравнения (1), то
.

Если – другое решение уравнения (1), то

Рассмотрим функцию
и проверим, является лирешением уравнения (1).

2. [Необходимость] Мы показали, что если мы начнем с какого-либо решения и добавим к нему
, то мы получим решение уравнения (1). Возникает вопрос, получим ли мы подобным образом все решения уравнения (1). Докажем, что это действительно так:

Пусть у нас есть два решения (1), и:

Обозначим

- однородное,
z t =ca t

-=ca t
=+ca t

Автономные линейные системы

Х t +1 =ax t +U (3)

=+ (2)

= ca t

= a + U
=

=+ ca t

Если


Если


В случае, когда
с течением времени система достигает состояния и соответствующим подбором уравнения U мы сможем достигнуть любого состояния. Система (3) называется в таком случае управляемой.

Если
, то с течением времени система примет неограниченные значения вне зависимости от уравнения и, следовательно, будет неуправляемой.

Общее решение (3) имеет вид:

(4)

Рассмотрим граничное условие x s =x s:

(5)

Неавтономные линейные системы

X t +1 =ax t +U t

X t+1 =ax t +U t =a(ax t-1 +U t-1)+U t =a 2 x t-1 +a U t-1 + U t = a 2 (ax t-2 +U t-2)+ aU t-1 + U t = a 3 x t-2 +a U t-2 + aU t-1 + U t)=

Если
, то

Если
, то

Предположим, последовательность U t является ограниченной, т.е. U t ≤для любогоt.

Тогда - пограничное значение.

ЭКОНОМИЧЕСКИЕ ПРИЛОЖЕНИЯ ТЕОРИИ ЛИНЕЙНЫХ СИСТЕМ

    Паутинообразная модель рыночного равновесия.

Основные предположения модели:

    линейный характер кривой спроса

    линейный характер кривой предложения

    равенство кривой спроса и предложения

где d 0 , d 1 >0

Предложение:

, где S 1 >0, S 0 ≤0 (так как при цене 0 никто ничего не выпускает).

Равновесие:

d 0 -d 1 P t =S 0 +S 1 P t-1

d 1 P t =d 0 -S 0 –S 1 P t-1 │:d 1

P t =
(*)

Для того чтобы цены с течением времени сходились к равновесной цене, необходимо, чтобы отношение илиS 1 d 1
в системе будут расходящиеся колебания.

на графике кривая

предложения круче, чем кривая спроса.

d 1 p * =d 0 -S 0 -S 1 p *

Для более рационального поведения производители в своих решениях должны учитывать не6 только текущую, но и будущую конъюнктуру рынка. Таким образом, для нормального функционирования рынка важна способность экономических агентов формировать ожидание будущего (делать прогнозы).

    Динамика цен на финансовых рынках.

S – предложение недвижимости

D – спрос на недвижимость

P t – стоимость акций в момент t.

d t – дисиденті в момент t.

r –процентная ставка по депозитным счетам.

- ожидаемая стоимость акций в момент t+1.

Арбитражем называется ситуация, позволяющая получить инвестору немедленную прибыль без риска за счет покупки актива по низкой цене и его немедленной перепродажи по более высокой цене.

Считается что рынок является эффективным, если на нем отсутствуют возможности для арбитража.

Воспользуемся принципом отсутствия арбитража, чтобы получить балансовое соотношение для стоимости акций.


(1)

На примере Харьковской недвижимости:

P t =30 тыс.дол.

D t =2 тыс.дол. в год – плата за сдачу жилья

-ожидаемая цена на квартиру в следующем периоде.

=33-2=31 тыс. дол.

МЕХАНИЗМЫ ФОРМИРОВАНИЯ ОЖИДАНИЙ

1. Модель адаптивных ожиданий

=
, где 0≤≤1

0
=

1
=

- метод экспоненциального сглаживания (2)

(1)

(2)

Предположим, что d t =d=const для любого t

0

Общее решение:
, где Р 0 – первоначальная стоимость акций.

a<1,
a t P 0
0

фундаментальная стоимость акций.

a t P 0 – спекулятивная составляющая

2. Модель рациональных ожиданий

Недостаток – низкая скорость обучения участников рынка. Это открывает возможность для интертепорального арбитража, т.е. спекуляции на прогнозируемых изменениях курса акций в последующих периодах.

Чтобы устранить это логическое противоречие, в 1970-х была предложена модель рациональных ожиданий (Р. Лукас).

Суть модели – в среднем рынок не может систематически ошибаться в оценке курса активов. Применительно к нашей модели это означает следующее: инвесторы не должны систематически ошибаться в оценке стоимости акций.

- несмещенность оценки, т.е.
- является несмещенной оценкойP t +1 ; или
=P t +1 +E t

E t – ошибка оценивания

Рассмотрим экстремальный вариант модели рациональных ожиданий (модель с полным предвидением), в которой ошибка оценивания равна 0.

С модели с полным предвидением предположим, что E t =0, т.е.
=P t +1

Рассмотрим динамику цен на акции в модели с полным предвидением.

Условие арбитража:

(1+r) P t =dt

(1+r) P t =dtP t+1

=P t+1

P t+1 =(1+r) Pt-d (3)

P t является нестабильной, P t →, поскольку (1+r) >, если только не начинаем движение с неподвижной точки:

Если P t = , тоP t + k =

d=0, P t +1 =(1+r) Pt

В модели полного предвидения ожидания инвесторов играют роль самовыражающегося пророчества, цены на активы могут неограниченно расти, т.к. инвесторы считают, что они будут расти. Таким образом, в такой модели спекулятивная компонента стоимости акций доминирует над ее фундаментальным значением.

Исходным моментом в создании Левиным теории мотивации стали представления о том, что сознание детерминировано двояко: процессом ассоциации и волей. Он рассматривал их как отдельные тенденции. Левин показал, что детерминирующая тенденция, называемая им квазипотребностью, не является частным случаем, а, наоборот, является динамической предпосылкой любого поведения. Энергетическая составляющая поведения всегда представляла для Левина центральное звено в объяснении намерений и действий человека.

Тип энергии, осуществляющий психическую работу, Левин назвал психической энергией. Она высвобождается, когда психическая система пытается вернуть равновесие, вызванное неуравновешенностью. Последняя связана с нарастанием напряжения в одной части системы относительно других.

Первой сравнительно большой общетеоретической работой Левина, в которой он предложил достаточно детально разработанную общепсихологическую объяснительную модель поведенческой динамики, стала его книга "Намерение, воля и потребность", опиравшаяся на результаты первых экспериментов Овсянкиной, Зейгарник, Биренбаум, Карстен. В этой книге Левин, почти не дискутируя открыто с З. Фрейдом, предлагает весьма убедительный ответ академической психологии на вызов Фрейда, первым обратившего внимание на игнорировавшуюся до него область изучения побудительных сил человеческих поступков.

Ключевые понятия Левина вынесены в заголовок книги. Согласно Левину, основанием человеческой активности в любых ее формах, будь то ассоциация, поступок, мышление, память, является намерение - потребность. Потребности он рассматривает как напряженные системы, порождающие напряжение, разрядка которого происходит в действии при наступлении подходящего случая. Чтобы отличить свое понимание потребности от уже сложившегося в психологии и связанного главным образом с биологическими, врожденными потребностями, которые соотносятся с некоторыми внутренними состояниями, Левин называет их "квазипотребностями". В понятие волевых процессов он включает спектр преднамеренных процессов разной степени произвольности, обращая внимание на такой их признак, как произвольное конструирование будущего поля, в котором наступление самого действия должно произойти уже автоматически. Особое место занимает в модели Левина понятие ”Aufforderungscharakter", переводится этот термин как побудительность (там, где есть квалификатор чего) или побудитель (там, где такого уточнения нет). Квазипотребности образуются в актуальной ситуации в связи с принятыми намерениями и проявляются в том, что определенные вещи или события приобретают побудительность, контакт с которыми влечет за собой тенденцию к определенным действиям. Констатируя известный факт, что мы всегда воспринимаем предметы пристрастно, они обладают для нас определенной эмоциональной окраской, Левин замечает, что помимо этого они как бы требуют от нас выполнения по отношению к себе определенной деятельности: "Хорошая погода и определенный ландшафт зовут нас на прогулку, ступеньки лестницы побуждают двухлетнего ребенка подниматься и спускаться; двери - открывать и закрывать их". Побудительность может различаться по интенсивности и знаку (притягательный или отталкивающий), но это, по мнению Левина, не главное. Гораздо важнее то, что объекты побуждают к определенным, более или менее узкоочерченным действиям, которые могут быть чрезвычайно различными, даже если ограничиться только положительными побудителями. Приводимые Левином факты свидетельствуют о прямой связи изменений побудительности объектов с динамикой потребностей и квазипотребностей субъекта, а также его жизненных целей.

Левин дает богатое описание феноменологии побудительности, которая меняется в зависимости от ситуации, а также в результате осуществления требуемых действий: насыщение ведет к потере объектом и действием побудительности, а пресыщение выражается в смене положительной побудительности на отрицательную; одновременно положительную побудительность приобретают посторонние вещи и занятия, особенно в чем-то противоположные исходному. Действия и их элементы также могут утрачивать свою естественную побудительность в результате автоматизации. И наоборот: с повышением интенсивности потребностей не только усиливается побудительность отвечающих им объектов, но и расширяется круг таких объектов (голодный человек становится менее привередливым).

Левин полагал, что личность - сложная энергетическая система, а тип энергии, осуществляющий психологической работу, называется психической энергией. Психическая энергия высвобождается, когда человек пытается вернуть равновесие после того, как оказался в состоянии неуравновешенности. Неуравновешенность продуцируется возрастанием напряжения в одной части системы относительно др. частей в результате внешней стимуляции или внутренних изменений. Личность живет и развивается в психологическом поле окружающих ее предметов, каждый из которых имеет определенный заряд (валентность). Валентность - концептуальное свойство региона психологической среды, это ценность региона для человека. Его эксперименты доказывали, что для каждого человека эта валентность имеет свой знак, хотя в то же время существуют такие предметы, которые для всех имеют одинаково притягательную или отталкивающую силу. Воздействуя на человека, предметы вызывают в нем потребности, которые Левин рассматривал как своего рода энергетические заряды, вызывающие напряжение человека. В этом состоянии человек стремится к разрядке, т.е. к удовлетворению собственной потребности. Левин различал два рода потребностей - биологические и социальные (квазипотребности). Одно из наиболее известных уравнений Левина, которыми он описывал поведение человека в психологическом поле под влиянием различных потребностей, показывает, что поведение является одновременно функцией личности и психологического поля.

Для объяснения динамики Левин использует некоторые понятия. Напряжение - состояние внутриличностного региона относительно других внутриличностных регионов. Организм стремится к выравниванию напряжения данного региона по сравнению с другими. Психологическим средством выравнивания напряжения является процесс - мышление, запоминание и др. Потребность - возрастание напряжения или высвобождение энергии во внутриличностном регионе. Потребности в структуре личности не изолированы, но находятся в связи друг с другом, в определенной иерархии. Потребности делятся на физиологические состояния (истинные потребности) и намерения, или квазипотребности. Понятие потребности отражает внутреннее состояние индивида, состояние нужды, а понятие квазипотребности эквивалентно специфическому намерению удовлетворить потребность. "Это значит, что к намерению вынуждены прибегать тогда, когда нет естественной потребности в выполнении соответствующего действия, или даже когда налицо естественная потребность противоположного характера".

Дифференциация - одно из ключевых понятий теории "поля". и относится ко всем аспектам жизненного пространства. Например, для ребенка, по Левину, характерна большая подверженность влиянию среды и, соответственно, большая слабость границ во внутренней сфере, в измерении "реальность-нереальность" и во временной сфере. Возрастающую организованность и интеграцию поведения личности теория "поля". определяет как организационную взаимозависимость. С приходом зрелости возникает большая дифференциация и в самой личности, и в психологическом окружении, увеличивается прочность границ, усложняется система иерархических и селективных отношений между напряженными системами.

Конечной целью всех психических процессов является стремление вернуть человеку равновесие. Этот процесс может осуществляться путем поиска определенных валентных объектов психологической среды, которые могут снять напряжение.

Левиновский подход отличало два момента. Во-первых, он перешел от представления о том, что энергия мотива замкнута в пределах организма, к представлению о системе "организм-среда". Индивид и его окружение выступили в виде нераздельного динамического целого. Во-вторых, в противовес трактовке мотивации как биологически предопределенной константы, Левин полагал, что мотивационное напряжение может быть создано как самим индивидом, так и другими людьми (например, экспериментатором, который предлагает индивиду выполнить задание). Тем самым за мотивацией признавался собственно психологический статус. Она не сводилась более к биологическим потребностям, удовлетворив которые организм исчерпывает свой мотивационный потенциал.

Свое представление о мотивации Левин выводил из неразрывной связи субъекта и объекта. При этом противопоставление внутреннего и внешнего снималось, т.к они объявлялись разными полюсами единого пространства - поля по Левину. Для гештальтпсихологов поле - это то, что воспринимается в качестве непосредственно данного сознанию. Для Левина поле - это структура, в которой совершается поведение. Она охватывает мотивационные устремления индивида и одновременно объекты этих устремлений. Левин выводил поведение из факта взаимодействия личности и среды. Его не интересовали объекты как вещи, а лишь то, в каком отношении они находятся к потребностям личности. Мотивационные изменения выводились не из внутренних структур личности, а из особенностей самого поля, из динамики целого.

Эти результаты сближают позицию Левина с идеями Адлера и гуманистической психологией: важность сохранения целостности личности, ее Самости, необходимость осознания человеком структуры своей личности. Сходство этих концепций, к которым пришли ученые разных школ и направлений, говорит об актуальности данной проблемы, о том, что, осознав влияние бессознательного на поведение, человечество приходит к мысли о необходимости провести границу между человеком и другими живыми существами, понять не только причины его агрессивности, жестокости, сладострастия, которые великолепно объяснил психоанализ, но и основы его нравственности, доброты, культуры. Большое значение имело и стремление в новом мире, после войны, показавшей ничтожность и хрупкость человека, преодолеть складывающееся ощущение типичности и взаимозаменяемости людей, доказать, что люди - целостные, уникальные системы, каждый из которых несет в себе свой внутренний мир, не похожий на мир других людей.

Современные физические представления базируются на анализе всего предыдущего теоретического и экспериментального опыта физических исследований, единстве физических знаний, дифференциации и интеграции естественных наук и т.п., что позволяет подразделять законы физики на динамические и статистические. Соотношение этих законов дает возможность исследовать природу причинности и причинных отношений в физике.

Наука исходит из признания того, что все существующее в мире возникает и уничтожается закономерно, в результате действия определенных причин, что все природные, социальные и психические явления обладают причинно-следственными связями, беспричинных явлений не бывает. Такая позиция называется детерминизмом в противоположность индетерминизму, отрицающему объективную причинную обусловленность явлений природы, общества и человеческой психики.

В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей. Открытие этих закономерностей - существенных, повторяющихся связей между предметами и явлениями - задача науки, так же как и формулирование их в виде законов науки. Но никакое научное знание, никакая научная теория не могут отразить окружающий мир, его отдельные фрагменты полностью, без упрощений и огрублений действительности. То же касается и законов науки. Они могут лишь в большей или меньшей степени приближаться к адекватному отображению объективных закономерностей, но искажения в ходе этого процесса неизбежны. Поэтому для науки очень важно, какую форму имеют ее законы, насколько они соответствуют природным закономерностям.

В этом отношении динамическая теория, представляющая собой совокупность динамических законов, отражает физические процессы без учета случайных взаимодействий. Динамический закон - это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно. Примерами динамических теорий являются классическая (ньютоновская) механика, релятивистская механика и классическая теория излучения.

Долгое время считалось, что никаких других законов, кроме динамических, не существует. Это было связано с установкой классической науки на механистичность и метафизичность, со стремлением построить любые научные теории по образцу механики И. Ньютона. Если какие-то объективные процессы и закономерности не вписывались в предусмотренные динамическими законами рамки, считалось, что мы просто не знаем их причин, но с течением времени это знание будет получено.

Такая позиция, связанная с отрицанием случайностей любого рода, с абсолютизацией динамических закономерностей и законов, называется механическим детерминизмом. Разработку этого требования обычно связывают с именем П. Лапласа. Он заявлял, что если бы нашелся достаточно обширный ум, которому были бы известны все силы, действующие на все тела Вселенной (от самых больших тел до мельчайших атомов), а также их местоположение, если бы он смог проанализировать эти данные в единой формуле движения, то не осталось бы ничего, что было бы недостоверным. Такому уму открылись бы как прошлое, так и будущее Вселенной.

В середине XIX в. в физике были сформулированы законы, предсказания которых являются не определенными, а только вероятными. Они получили название статистических законов. Так, в 1859 г. была доказана несостоятельность позиции механического детерминизма: Д. Максвелл при построении статистической механики использовал законы нового типа и ввел в физику понятие вероятности. Это понятие было выработано ранее математикой при анализе случайных явлений.

При броске игральной кости, как мы знаем, может выпасть любое число очков от 1 до 6. Предсказать, какое число очков выпадет при очередном броске, нельзя. Мы можем подсчитать лишь вероятность выпадения числа очков. В данном случае она будет равна "Д. Эта вероятность имеет объективный характер, так как выражает объективные отношения реальности. Действительно, если мы бросим кость, какая- то сторона с определенным числом очков выпадет обязательно. Это такая же строгая причинно-следственная связь, как и та, что отражается динамическими законами, но она имеет другую форму, поскольку показывает вероятность, а не однозначность события.

Проблема в том, что для обнаружения такого рода закономерностей обычно требуется не единичное событие, а цикл таких событий; в таком случае мы можем получить статистические средние значения. Если бросить кость 300 раз, то среднее число выпадения любого значения будет равно 300 х *Д = 50 раз. При этом безразлично, бросать одну и ту же кость 300 раз или одновременно бросить 300 одинаковых костей.

Несомненно, что поведение газовых молекул в сосуде гораздо сложнее брошенной кости. Но и здесь можно обнаружить определенные количественные закономерности, позволяющие вычислить статистические средние значения. Д. Максвеллу удалось решить эту задачу и показать, что случайное поведение отдельных молекул подчинено определенному статистическому (вероятностному) закону. Статистический закон - закон, управляющий поведением большой совокупности объектов и их элементов, позволяющий давать вероятностные выводы об их поведении. Примерами статистических законов являются квантовая механика, квантовая электродинамика и релятивистская квантовая механика.

Статистические законы в отличие от динамических отражают однозначную связь не физических величин, а статистических распределений этих величин. Но это такой же однозначный результат, как и в динамических теориях. Ведь статистические теории, как и динамические, выражают необходимые связи в природе, а они не могут быть выражены иначе, чем через однозначную связь состояний. Различается только способ фиксации этих состояний.

На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но это иная, более глубокая форма детерминизма; в отличие от жесткого классического детерминизма он может быть назван вероятностным (современным) детерминизмом. «Вероятностные» законы меньше огрубляют действительность, способны учитывать и отражать те случайности, которые происходят в мире.

К началу XX в. стало очевидно, что нельзя отрицать роль статистических законов в описании физических явлений. Появлялось все больше статистических теорий, а все теоретические расчеты, проведенные в рамках этих теорий, полностью подтверждались экспериментальными данными. Результатом стало выдвижение теории равноправия динамических и статистических законов. Те и другие законы рассматривались как равноправные, но относящиеся к различным явлениям. Считалось, что каждый тип закона имеет свою сферу применения и они дополняют друг друга, что индивидуальные объекты, простейшие формы движения должны описываться с помощью динамических законов, а большая совокупность этих же объектов, высшие, более сложные формы движения - статистическими законами. Соотношение теорий термодинамики и статистической механики, электродинамика Д. Максвелла и электронная теория X. Лоренца, казалось, подтверждали это.

Ситуация в науке кардинально изменилась после возникновения и развития квантовой теории. Она привела к пересмотру всех представлений о роли динамических и статистических законов в отображении закономерностей природы. Был обнаружен статистический характер поведения отдельных элементарных частиц, никаких динамических законов в квантовой механике открыть не удалось. Таким образом, сегодня большинство ученых рассматривают статистические законы как наиболее глубокую и общую форму описания всех физических закономерностей.

Создание квантовой механики дает полное основание утверждать, что динамические законы представляют собой первый, низший этап в познании окружающего нас мира. Статистические законы более полно отражают объективные связи в природе, являются более высокой ступенью познания. На протяжении всей истории развития науки мы видим, как первоначально возникшие динамические теории, охватывающие определенный круг явлений, сменяются по мере развития науки статистическими теориями, описывающими тот же круг вопросов, но с новой, более глубокой точки зрения. Только они способны отразить случайность, вероятность, играющую огромную роль в окружающем нас мире. Только они соответствуют современному (вероятностному) детерминизму.

Одной из наиболее актуальных проблем современного естествознания и, в частности физики, остается вопрос о природе причинности и причинных отношениях в мире. Более конкретно этот вопрос в физике формулируется в проблеме соотношения динамических и статистических законов с объективными закономерностями. В решении этой проблемы возникли два философских направления - детерминизм и индетерминизм, занимающие прямо противоположные позиции.
Детерминизм - учение о причинной материальной обусловленности природных, социальных и психических явлений. Сущностью детерминизма является идея о том, что все существующее в мире возникает и уничтожается закономерно, в результате действия определенных причин.
Индетерминизм - учение, отрицающее объективную причинную обусловленность явлений природы, общества и человеческой психики.
В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей и находит свое более полное и общее отражение в фундаментальных физических теориях.
Фундаментальные физические теории (законы) представляют собой совокупность наиболее существенных знаний о физических закономерностях. Эти знания не являются исчерпывающими, но на сегодняшний день они наиболее полно отражают физические процессы в природе. В свою очередь, на основе тех или иных фундаментальных теорий формулируются частные физические законы типа закона Архимеда, закона Ома, закона электромагнитной индукции и т.д.
Ученые-науковеды едины во мнении, что основу любой физической теории составляют три главных элемента:
1) совокупность физических величин, с помощью которых описываются объекты данной теории (например, в механике Ньютона - координаты, импульсы, энергия, силы); 2) понятие состояния; 3) уравнения движения, то есть уравнения, описывающие эволюцию состояния рассматриваемой системы.
Кроме того, для решения проблемы причинности важное значение имеет подразделение физических законов и теорий на динамические и статистические (вероятностные).

ДИНАМИЧЕСКИЕ ЗАКОНЫ И ТЕОРИИ И МЕХАНИЧЕСКИЙ, ДЕТЕРМИНИЗМ

Динамический закон - это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно. Динамической теорией является физическая теория, представляющая совокупность динамических законов. Исторически первой и наиболее простой теорией такого рода явилась классическая механика Ньютона. Она претендовала на описание механического движения, то есть перемещения в пространстве с течением времени любых тел или частей тел относительно друг друга с какой угодно точностью.
Непосредственно законы механики, сформулированные Ньютоном, относятся к физическому телу, размерами которого можно пренебречь, материальной точке. Но любое тело макроскопических размеров всегда можно рассматривать как совокупность материальных точек и, следовательно, достаточно точно описать его движения.
Поэтому в современной физике под классической механикой понимают механику материальной точки или системы материальных точек и механику абсолютно твердого тела.
Для расчета движения должна быть известна зависимость взаимодействия между частицами от их координат и от скоростей. Тогда по заданным значениям координат и импульсов всех частиц системы в начальный момент времени второй закон Ньютона позволяет однозначно определить координаты и импульсы в любой последующий момент времени. Это позволяет утверждать, что координаты и импульсы частиц системы полностью определяют ее состояние в механике. Любая механическая величина, представляющая для нас интерес (энергия, момент импульса и т.д.), выражается через координаты и импульс. Таким образом, определяются все три элемента фундаментальной теории, какой является классическая механика.
Другим примером фундаментальной физической теории динамического характера может служить электродинамика Максвелла. Здесь объектом исследования является электромагнитное поле. Тогда уравнения Максвелла представляют собой уравнения движения для электромагнитной формы материи. При этом структура электродинамики в самых общих чертах повторяет структуру механики Ньютона. Уравнения Максвелла позволяют по заданным начальным значениям электрического и магнитного полей внутри некоторого объема однозначно определить электромагнитное поле в любой последующий момент времени.
Другие фундаментальные теории динамического характера имеют ту же структуру, что и механика Ньютона, и электродинамика Максвелла. К их числу относятся: механика сплошных сред, термодинамика и общая теория относительности (теория гравитации).
Метафизическая философия считала, что все объективные физические закономерности (и не только физические) имеют точно такой же характер, что и динамические законы. Иначе говоря, не признавались никакие другие виды объективных закономерностей, кроме динамических закономерностей, выражающих однозначные связи физических объектов и описывающих их абсолютно точно посредством определенных физических величин. Отсутствие такого полного описания трактовалось как недостаток наших познавательных способностей.
Абсолютизация динамических закономерностей и, следовательно, механического детерминизма, обычно связывается с П.Лапласом, которому принадлежит уже цитированное нами знаменитое высказывание о том, что если бы нашелся достаточно обширный ум, которому были бы известны для любого данного момента все силы, действующие на все тела Вселенной (от самых больших ее тел до мельчайших атомов), а также их местоположение, если бы он смог проанализировать эти данные в единой формуле движения, то не осталось бы ничего, что было бы недостоверным, и ему было бы открыто как прошлое, так и будущее Вселенной.
Согласно провозглашенному Лапласом принципу, все явления в природе предопределены с «железной» необходимостью. Случайному, как объективной категории, нет места в нарисованной Лапласом картине мира. Только ограниченность наших познавательных способностей заставляет рассматривать отдельные события в мире как случайные. В силу этих причин, а также отмечая роль Лапласа, классический механический детерминизм называют еще жестким или лапласовским детерминизмом.
Необходимость отказа от классического детерминизма в физике стала очевидной после того, как выяснилось, что динамические законы не универсальны и не единственны и что более глубокими законами природы являются не динамические, а статистические законы, открытые во второй половине XIX века, особенно после того, как выяснился статистический характер законов микромира.
Но даже и при описании движения отдельных макроскопических тел осуществление идеального классического детерминизма практически невозможно. Это хорошо видно из описания постоянно меняющихся систем. Вообще начальные параметры любых механических систем невозможно фиксировать с абсолютной точностью, поэтому точность предсказания физических величин со временем уменьшается. Для каждой механической системы существует некоторое критическое время, начиная с которого невозможно точно предсказать ее поведение.
Несомненно, что лапласовский детерминизм с определенной степенью идеализации отражает реальное движение тел и в этом отношении его нельзя считать ложным. Но абсолютизация его как совершенно точного отображения действительности недопустима.
С утверждением главенствующего значения статистических закономерностей в физике исчезает идея всеведущего сознания, для которого абсолютно точно и однозначно детерминированы судьбы мира, тот идеал, который был поставлен перед наукой концепцией абсолютного детерминизма.

СТАТИСТИЧЕСКИЕ ЗАКОНЫ И ТЕОРИИ И ВЕРОЯТНОСТНЫЙ ДЕТЕРМИНИЗМ

Описанные выше динамические законы имеют универсальный характер, то есть они относятся ко всем без исключения изучаемым объектам. Отличительная особенность такого рода законов состоит в том, что предсказания, полученные на их основе, имеют достоверный и однозначный характер.
Наряду с ними в естествознании в середине прошлого века были сформулированы законы, предсказания которых являются не определенными, а только вероятными. Свое название эти законы получили от характера той информации, которая была использована для их формулировки. Вероятностными они назывались потому, что заключения, основанные на них, не следуют логически из имеющейся информации, а потому не являются достоверными и однозначными. Поскольку сама информация при этом носит статистический характер, часто такие законы называются также статистическими, и это их название получило в естествознании значительно большее распространение.
Представления о закономерностях особого типа, в которых связи между величинами, входящими в теорию, неоднозначны, впервые ввел Максвелл в 1859 г. Он первым понял, что при рассмотрении систем, состоящих из огромного числа частиц, нужно ставить задачу совсем иначе, чем это делалось в механике Ньютона. Для этого Максвелл ввел в физику понятие вероятности, выработанное ранее математиками при анализе случайных явлений, в частности азартных игр.
Многочисленные физические и химические опыты показали, что в принципе невозможно не только проследить изменения импульса или положения одной молекулы на протяжении большого интервала времени, но и точно определить импульсы и координаты всех молекул газа или другого макроскопического тела в данный момент времени. Ведь число молекул или атомов в макроскопическом теле имеет порядок 1023. Из макроскопических условий, в которых находится газ (определенная температура, объем, давление и т.д.), не вытекают с необходимостью определенные значения импульсов и координат молекул. Их следует рассматривать как случайные величины, которые в данных макроскопических условиях могут принимать различные значения, подобно тому, как при бросании игральной кости может выпасть любое число очков от 1 до 6. Предсказать, какое число очков выпадет при данном бросании кости, нельзя. Но вероятность выпадения, например, 5, можно подсчитать.
Эта вероятность имеет объективный характер, так как выражает объективные отношения реальности и ее введение не обусловлено лишь незнанием нами деталей течения объективных процессов. Так, для кости вероятность выпадения любого числа очков от 1 до 6 равно "/6, что не зависит от познания этого процесса и потому есть явление объективное.
На фоне множества случайных событий обнаруживается определенная закономерность, выражаемая числом. Это число - вероятность события - позволяет определять статистические средние значения (сумма отдельных значений всех величин, деленная на их число). Так, если бросить кость 300 раз, то среднее число выпадения пятерки будет равно 300 . "Л = 50 раз. Причем совершенно безразлично, бросать одну и ту же кость или одновременно бросить 300 одинаковых костей.
Несомненно, что поведение газовых молекул в сосуде гораздо сложнее брошенной кости. Но и здесь можно обнаружить определенные количественные закономерности, позволяющие вычислить статистические средние значения если только ставить задачу так же, как в теории игр, а не как в классической механике. Нужно отказаться, например, от неразрешимой задачи определения точного значения импульса молекулы в данный момент, а пытаться найти вероятность определенного значения этого импульса.
Максвеллу удалось решить эту задачу. Статистический закон распределения молекул по импульсам оказался несложным. Но главная заслуга Максвелла состояла не в решении, а в самой постановке новой проблемы. Он ясно осознал, что случайное в данных макроскопических условиях поведение отдельных молекул подчинено определенному вероятностному (или статистическому) закону.
После данного Максвеллом толчка молекулярно-кинетическая теория (или статистическая механика, как стали называть ее в дальнейшем) начала стремительно развиваться.
Статистические законы и теории имеют следующие характерные черты.
1. В статистических теориях любое состояние представляет собой вероятностную характеристику системы. Это означает, что состояние в статистических теориях определяется не значениями физических величин, а статистическими (вероятностными) распределениями этих величин. Это принципиально иная характеристика состояния, чем в динамических теориях, где состояние задается значениями самих физических величин.
2. В статистических теориях по известному начальному состоянию в качестве результата однозначно определяются не сами значения физических величин, а вероятности этих значений внутри заданных интервалов. Тем самым однозначно определяются средние значения физических величин. Эти средние значения в статистических теориях играют ту же роль, что и сами физические величины в динамических теориях. Нахождение средних значений физических величин - главная задача статистических теории.
Вероятностные характеристики состояния в статистических теориях совершенно отличны от характеристик состояния в динамических теориях. Тем не менее динамические и статистические теории обнаруживают в самом существенном отношении замечательное единство. Эволюция состояния в статистических теориях однозначно определяется уравнениями движения, как и в динамических теориях. По заданному статистическому распределению (по заданной вероятности) в начальный момент времени уравнение движения однозначно определяет статистическое распределение (вероятность) в любой последующий момент времени, если известны энергия взаимодействия частиц друг с другом и с внешними телами. Однозначно определяются соответственно и средние значения всех физических величин. Здесь нет никакого отличия от динамических теорий в отношении однозначности результатов. Ведь статистические теории, как и динамические, выражают необходимые связи в природе, а они вообще не могут быть выражены иначе, чем через однозначную связь состояний.
На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но детерминизм в статистических закономерностях представляет более глубокую форму детерминизма в природе. В отличие от жесткого классического детерминизма он может быть назван вероятностным (или современным) детерминизмом.
Статистические законы и теории являются более совершенной формой описания физических закономерностей, любой известный на сегодняшний день процесс в природе более точно описывается статистическими законами, чем динамическими. Однозначная связь состояний в статистических теориях говорит об их общности с динамическими теориями. Различие между ними в одном - способе фиксации (описания) состояния системы.
Истинное, всеобъемлющее значение вероятностного детерминизма стало очевидным после создания квантовой механики - статистической теории, описывающей явления атомарного масштаба, то есть движение элементарных частиц и состоящих из них систем (другими статистическими теориями являются: статистическая теория неравновесных процессов, электронная теория, квантовая электродинамика). Несмотря на то, что квантовая механика значительно отличается от классических теорий, общая для фундаментальных теорий структура сохраняется и здесь. Физические величины (координаты, импульсы, энергия, момент импульса и т.д.) остаются в общем теми же, что и в классической механике. Основной величиной, характеризующей состояние, является комплексная волновая функция. Зная ее, можно вычислить вероятность обнаружения определенного значения не только координаты, но и любой другой физической величины, а также средние значения всех величин. Основное уравнение нерелятивистской квантовой механики - уравнение Шредингера - однозначно определяет эволюцию состояния системы во времени.

СООТНОШЕНИЕ ДИНАМИЧЕСКИХ И СТАТИСТИЧЕСКИХ ЗАКОНОВ

Сразу же после появления в физике понятия статистического закона возникла проблема существования статистических закономерностей и их соотношения с динамическими законами.
С развитием науки подход к этой проблеме и даже ее постановка менялись. Первоначально основным в проблеме соотношения был вопрос об обосновании классической статистической механики на базе динамических законов Ньютона. Исследователи пытались выяснить, как статистическая механика, существенной чертой которой является вероятностный характер предсказания значений физических величин, должна относиться к законам Ньютона с их однозначными связями между значениями всех величин.
Статистические законы, как новый тип описания закономерностей, были первоначально сформулированы на основе динамических уравнений классической механики. Длительное время динамические законы считались основным, первичным типом отображения физических закономерностей, а статистические законы рассматривались в значительной мере как следствие ограниченности наших способностей к познанию.
Но сегодня известно, что закономерности поведения объектов микромира и законы квантовой механики являются статистическими. Именно тогда вопрос был поставлен так: является ли статистическое описание микропроцессов единственно возможным или же существуют динамические законы, более глубоко определяющие движение элементарных частиц, но скрытые под покровом статистических законов квантовой механики?
Возникновение и развитие квантовой теории постепенно привело к пересмотру представлений о роли динамических и статистических законов в отображении закономерностей природы. Был обнаружен статистический характер поведения отдельных элементарных частиц. При этом за описывающими это поведение законами квантовой механики не было обнаружено никаких динамических законов. Поэтому крупнейшими учеными, такими, как Н. Бор, В. Гейзенберг, М. Борн, П. Ланжевен и другими, был выдвинут тезис о первичности статистических законов. Правда, принятие в тот момент этого тезиса было затруднено из-за того, что некоторые из вышеназванных ученых связывали положение о первичности статистических законов с индетерминизмом. Поскольку привычная модель детерминизма в микромире была недостижима, они делали вывод об отсутствии в микромире причинности вообще. Но большая часть ученых с этим выводом не согласилась и стала настаивать на необходимости отыскать динамические законы для описания микромира, воспринимая статистические законы как промежуточный этап, позволяющий описывать поведение совокупности микрообъектов, но не дающий еще возможности точно описать поведение отдельных микрообъектов.
Когда стало очевидно, что нельзя отрицать роль статистических законов в описании физических явлений (все экспериментальные данные полностью соответствовали теоретическим расчетам, основанным на подсчетах вероятностей), была выдвинута теория «равноправия» статистических и динамических законов. Те и другие законы рассматривались как законы равноправные, но относящиеся к различным явлениям, имеющие каждый свою сферу применения, не сводимые друг к другу, но взаимно дополняющие друг друга.
Эта точка зрения не учитывает того бесспорного факта, что все фундаментальные статистические теории современной физики (квантовая механика, квантовая электродинамика, статистическая термодинамика и т.д.) содержат в качестве своего приближения соответствующие динамические теории. Поэтому сегодня многие крупные ученые склонны рассматривать статистические законы как наиболее глубокую, наиболее общую форму описания всех физических закономерностей.
Нет основания делать вывод об индетерминизме в природе потому, что законы микромира являются принципиально статистическими. Поскольку детерминизм настаивает на существовании объективных закономерностей, постольку индетерминизм должен означать отсутствие таких закономерностей. Этого, безусловно, нет. Статистические закономерности ничуть не менее объективны, чем динамические, и отражают взаимосвязь явлений материального мира. Доминирующее значение статистических законов означает переход к более высокой ступени детерминизма, а не отказ от него вообще.
При рассмотрении соотношения между динамическими и статистическими законами мы встречаемся с двумя аспектами этой проблемы.
В аспекте, возникшем исторически первым, соотношение между динамическими и статистическими законами выступает в следующем плане: законы, отражающие поведение индивидуальных объектов, являются динамическими, а законы, описывающие поведение большой совокупности этих объектов, статистическими. Таково, например, соотношение между классической механикой и статистической механикой. Существенным для данного аспекта является то, что здесь динамические и статистические законы описывают разные формы движения материи, не сводимые друг к другу. Они имеют разные объекты описания, и поэтому анализ теорий не позволяет выявить существенное в их отношении друг к другу. Этот аспект не может считаться основным при анализе их соотношения.
Второй аспект проблемы изучает соотношение динамических и статистических законов, описывающих одну и ту же форму движения материи. Примером могут служить термодинамика и статистическая механика, электродинамика Максвелла и электронная теория и т.д.
До появления квантовой механики считалось, что поведение индивидуальных объектов всегда подчиняется динамическим закономерностям, а поведение совокупности объектов -статистическим; низшие, простейшие формы движения подчиняются динамическим закономерностям, а высшие, более сложные - статистическим. Но с возникновением квантовой механики было установлено, что как «низшие», так и «высшие» формы движения материи могут описываться и динамическими, и статистическими законами. Например, квантовая механика и квантовая статистика описывают разные формы материи, но обе эти теории являются статистическими.
После создания квантовой механики можно с полным основанием утверждать, что динамические законы представляют собой первый, низший этап в познании окружающего нас мира и что статистические законы более полно отражают объективные связи в природе, являясь более высоким этапом познания. На протяжении всей истории развития науки мы видим, как первоначально возникшие динамические теории, охватывающие определенный круг явлений, сменяются по мере развития науки статистическими теориями, описывающими тот же круг вопросов с новой, более глубокой точки зрения.
Смена динамических теорий статистическими не означает, что старые динамические теории отживают свой век и забываются. Практическая их ценность в определенных границах нисколько не умаляется фактом создания новых статистических теорий. Говоря о смене теорий, мы в первую очередь имеем в виду смену менее глубоких физических представлений более глубокими представлениями о сущности явлений. Одновременно со сменой физических представлений расширяется область применимости теорий. Статистические теории распространяются на более широкий круг явлений, недоступный динамическим теориям. Статистические теории находятся в лучшем количественном согласии с экспериментом, чем динамические. Но при определенных условиях статистическая теория приводит к таким же результатам, как и более простая динамическая теория (вступает в действие принцип соответствия -речь о нем пойдет ниже).
Связь необходимого и случайного не может быть вскрыта в рамках динамических законов, так как они игнорируют случайное. В динамическом законе отображается тот средний необходимый результат, к которому приводит течение процессов, но не отражается сложный характер определения данного результата. При рассмотрении достаточно обширного круга вопросов, когда отклонения от необходимого среднего значения ничтожны, такое описание процессов вполне удовлетворительно. Но и в этом случае оно может считаться достаточным при условии, что нас не интересуют те сложные взаимоотношения, которые приводят к необходимым связям, и мы ограничиваемся лишь констатацией этих связей. Надо отчетливо представлять себе, что абсолютно точных однозначных связей физических величин, о которых говорят динамические теории, в природе просто нет. В реальных процессах всегда происходят неизбежные отклонения от необходимых средних величин - случайные флуктуации, которые только при определенных условиях не играют существенной роли и могут не учитываться.
Динамические теории не способны описывать явления, когда флуктуации значительны, и не способны предсказывать, при каких именно условиях мы уже не можем рассматривать необходимое в отрыве от случайного. В динамических законах необходимость выступает в форме, огрубляющей ее связь со случайностью. Но как раз последнее обстоятельство учитывают статистические законы. Отсюда следует, что статистические законы отображают реальные физические процессы глубже, чем динамические. Не случайно статистические законы познаются вслед за динамическими.
Возвращаясь к проблемам причинности, мы сможем сделать вывод, что на основе динамических и статистических законов возникает динамическая и вероятностная причинность. И как статистические законы глубже отражают объективные связи природы, чем динамические, так и вероятностная причинность является более общей, а динамическая - лишь ее частным случаем.

План семинарского занятия (2 часа)

1. Динамические законы и механический детерминизм.
2. Статистические законы и вероятностный детерминизм.
3. Соотношение динамических и статистических законов.

Темы докладов и рефератов

ЛИТЕРАТУРА

1. Мякишев Г.Я. Динамические и статистические закономерности в физике. М„ 1973.
2. Свечников Г.А. Причинность и связь состояний в физике. М., 1971.
3. Философские проблемы естествознания. М., 1985.