Идеальным называют газ у которого. Введение

Как известно, многие вещества в природе могут находиться в трех агрегатных состояниях: твердом, жидком и газообразном .

Учение о свойствах вещества в различных агрегатных состояниях основывается на представлениях об атомно-молекулярном строении материального мира. В основе молекулярно-кинетической теории строения вещества (МКТ) лежат три основных положения:

  • все вещества состоят из мельчайших частиц (молекул, атомов, элементарных частиц), между которыми есть промежутки;
  • частицы находятся в непрерывном тепловом движении;
  • между частицами вещества существуют силы взаимодействия (притяжения и отталкивания); природа этих сил электромагнитная.

Значит, агрегатное состояние вещества зависит от взаимного расположения молекул, расстояния между ними, сил взаимодействия между ними и характера их движения.

Сильнее всего проявляется взаимодействие частиц вещества в твердом состоянии. Расстояние между молекулами примерно равно их собственным размерам. Это приводит к достаточно сильному взаимодействию, что практически лишает частицы возможности двигаться: они колеблются около некоторого положения равновесия. Они сохраняют форму и объем.

Свойства жидкостей также объясняются их строением. Частицы вещества в жидкостях взаимодействуют менее интенсивно, чем в твердых телах, и поэтому могут скачками менять свое местоположение – жидкости не сохраняют свою форму – они текучи. Жидкости сохраняют объем.

Газ представляет собой собрание молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. Газы не имеют собственной формы, занимают весь предоставляемый им объем и легко сжимаются.

Существует еще одно состояние вещества – плазма. Плазма - частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру и дальше, резко усилится процесс термической ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ионы.

Модель идеального газа. Связь между давлением и средней кинетической энергией.

Для выяснения закономерностей, которым подчиняется поведение вещества в газообразном состоянии, рассматривается идеализированная модель реальных газов – идеальный газ. Это такой газ, молекулы которого рассматриваются как материальные точки, не взаимодействующие друг с другом на расстоянии, но взаимодействующие друг с другом и со стенками сосуда при столкновениях.

Идеальный газ это газ, взаимодействие между молекулами которого пренебрежимо мало. (Ек>>Ер)

Идеальный газ – это модель, придуманная учеными для познания газов, которые мы наблюдаем в природе реально. Она может описывать не любой газ. Не применима, когда газ сильно сжат, когда газ переходит в жидкое состояние. Реальные газы ведут себя как идеальный, когда среднее расстояние между молекулами во много раз больше их размеров, т.е. при достаточно больших разрежениях.

Свойства идеального газа:

  1. расстояние между молекулами много больше размеров молекул;
  2. молекулы газа очень малы и представляют собой упругие шары;
  3. силы притяжения стремятся к нулю;
  4. взаимодействия между молекулами газа происходят только при соударениях, а соударения считаются абсолютно упругими;
  5. молекулы этого газа двигаются беспорядочно;
  6. движение молекул по законам Ньютона.

Состояние некоторой массы газообразного вещества характеризуют зависимыми друг от друга физическими величинами, называемыми параметрами состояния. К ним относятся объем V , давление p и температура T .

Объем газа обозначается V . Объем газа всегда совпадает с объемом того сосуда, который он занимает. Единица объема в СИ м 3 .

Давление физическая величина, равная отношению силы F , действующей на элемент поверхности перпендикулярно к ней, к площади S этого элемента .

p = F / S Единица давления в СИ паскаль [Па]

До настоящего времени употребляются внесистемные единицы давления:

техническая атмосфера 1 ат = 9,81-104 Па;

физическая атмосфера 1 атм = 1,013-105 Па;

миллиметры ртутного столба 1 мм рт. ст.= 133 Па;

1 атм = = 760 мм рт. ст. = 1013 гПа.

Как возникает давление газа? Каждая молекула газа, ударяясь о стенку сосуда, в котором она находится, в течение малого промежутка времени дей­ствует на стенку с определенной силой. В результате беспорядочных ударов о стенку сила со стороны всех молекул на единицу площади стенки быстро меняется со временем относительно некоторой (средней) величины.

Давление газа возникает в результате беспорядочных ударов молекул о стенки сосуда, в котором находится газ.

Используя модель идеального газа, можно вычислить давление газа на стенку сосуда .

В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υ x скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υ y скорости, параллельная стенке, остается неизменной.

Приборы, измеряющие давление, называют манометрами. Манометры фиксиру­ют среднюю по времени силу давления, приходящуюся на единицу площади его чувствительного элемента (мембраны) или другого приемника давления.

Жидкостные манометры:

  1. открытый – для измерения небольших давлений выше атмосферного
  2. закрытый - для измерения небольших давлений ниже атмосферного, т.е. небольшого вакуума

Металлический манометр – для измерения больших давлений.

Основной его частью является изогнутая трубка А, открытый конец которой припаян к трубке В, через которую поступает газ, а закрытый – соединен со стрелкой. Газ поступает через кран и трубку В в трубку А и разгибает её. Свободный конец трубки, перемещаясь, приводит в движение передающий механизм и стрелку. Шкала градуирована в единицах давления.

Основное уравнение молекулярно-кинетической теории идеального газа.

Основное уравнение МКТ : давление идеального газа пропорционально произведению массы молекулы, концентрации молекул и среднему квадрату скорости движения молекул

p = 1/3· m n·v 2

m 0 - масса одной молекулы газа;

n = N/V – число молекул в единице объема, или концентрация молекул;

v 2 - средняя квадратичная скорость движения молекул.

Так как средняя кинетическая энергия поступательного движения молекул E = m 0 *v 2 /2, то домножив основное уравнение МКТ на 2, получим p = 2/3· n·(m 0 · v 2)/2 = 2/3·E·n

p = 2/3·E·n

Давление газа равно 2/3 от средней кинетической энергии поступательного движения молекул, которые содержатся в единичном объеме газа.

Так как m 0 ·n = m 0 ·N/V = m/V = ρ, где ρ – плотность газа, то имеем p = 1/3· ρ· v 2

Объединенный газовый закон.

Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа.

Важнейшими термодинамическими параметрами газа являются его объем V , давление р и температура Т.

Всякое изменение состояния газа называется термодинамическим процессом.

В любом термодинамическом процессе изменяются параметры газа, определяющие его состояние.

Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом .

Газовый закон, выражающий связь между всеми тремя параметрами газа называется объединенным газовым законом.

p = nkT

Соотношение p = nkT связывающее давление газа с его температурой и концентрацией молекул, получено для модели идеального газа, молекулы которого взаимодействуют между собой и со стенками сосуда только во время упругих столкновений. Это соотношение может быть записано в другой форме, устанавливающей связь между макроскопическими параметрами газа – объемом V , давлением p , температурой T и количеством вещества ν. Для этого нужно использовать равенства

где n – концентрация молекул, N – общее число молекул, V – объем газа

Тогда получим или

Так как при постоянной массе газа N остается неизменным, то Nk – постоянное число, значит

При постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном и часто его называют уравнением Клайперона .

Уравнение Клайперона можно записать в другой форме.

p = nkT,

учитывая, что

Здесь N – число молекул в сосуде, ν – количество вещества, N А – постоянная Авогадро, m – масса газа в сосуде, M – молярная масса газа. В итоге получим:

Произведение постоянной Авогадро N А на постоянную Больцмана k называется универсальной (молярной) газовой постоянной и обозначается буквой R .

Ее численное значение в СИ R = 8,31 Дж/моль·К

Соотношение

называется уравнением состояния идеального газа .

В полученной нами форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева .`

Для одного моля любого газа это соотношение принимает вид: pV=RT

Установим физический смысл молярной газовой постоянной . Предположим, что в некотором цилиндре под поршнем при температуре Е находится 1 моль газа, объем которого V. Если нагреть газ изобарно (при постоянном давлении) на 1 К, то поршень поднимется на высоту Δh, а обьем газа увеличится на ΔV.

Запишем уравнение pV =RT для нагретого газа: p (V + ΔV) = R (T + 1)

и вычтем из этого равенства уравнение pV=RT , соответствующее состоянию газа до нагревания. Получим pΔV = R

ΔV = SΔh, где S – площадь основания цилиндра. Подставим в полученное уравнение:

pS = F – сила давления.

Получим FΔh = R, а произведение силы на перемещение поршня FΔh = А – работа по перемещению поршня, совершаемая этой силой против внешних сил при расширении газа.

Таким образом, R = A .

Универсальная (молярная) газовая постоянная численно равна работе, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

; в которой пренебрегают размерами частиц газа, не учитывают силы взаимодействия между частицами газа, предполагая, что средняя кинетическая энергия частиц много больше энергии их взаимодействия, и считают, что столкновения частиц газа между собой и со стенками сосуда абсолютно упругие.

Существуют модель классического идеального газа, свойства которого описываются законами классической физики, и модель квантового идеального газа, подчиняющегося законам квантовой механики. Обе модели идеального газа справедливы для реальных классических и квантовых газов при достаточно высоких температурах и разряжениях.

В модели классического идеального газа газ рассматривают как совокупность огромного числа одинаковых частиц (молекул), размеры которых пренебрежимо малы. Газ заключен в сосуд, и в состоянии теплового равновесия никаких макроскопических движений в нем не происходит. Т. е. это газ, энергия взаимодействия между молекулами которого значительно меньше их кинетической энергии, а суммарный объем всех молекул значительно меньше объема сосуда. Молекулы движутся по законам классической механики независимо друг от друга, и взаимодействуют между собой только во время столкновений, которые носят характер упругого удара. Давление идеального газа на стенку сосуда равно сумме импульсов, переданных за единицу времени отдельными частицами при столкновениях со стенкой, а энергия - сумме энергий отдельных частиц.

Состояние идеального газа характеризуют три макроскопические величины: P - давление, V - объем, Т - температура. На основе модели идеального газа были теоретически выведены ранее установленные опытным путем экспериментальные законы (закон Бойля- Мариотта , закон Гей-Люссака , закон Шарля , закон Авогадро). Эта модель легла в основу молекулярно-кинетических представлений (см. Кинетическая теория газов).

Установленная опытным путем связь между давлением, объемом и температурой газа приближенно описывается уравнением Клапейрона , которое выполняется тем точнее, чем ближе газ по свойствам к идеальному. Классический идеальный газ подчиняется уравнению состояния Клапейрона p = nkT , где р - давление, n - число частиц в единице объема, k - постоянная Больцмана , Т - абсолютная температура. Уравнение состояния и закон Авогадро впервые связали макрохарактеристики газа - давление, температуру, массу - с массой его молекулы.

В идеальном газе, где молекулы не взаимодействуют между собой, энергия всего газа является суммой энергий отдельных молекул и для одного моля одноатомного газа эта энергия U =3/2(RT) , где R - универсальная газовая постоянная . Эта величина не связана с движением газа как целого и является внутренней энергией газа. Для неидеального газа внутренняя энергия представляет сбой сумму энергий отдельных молекул и энергии их взаимодействия.

Частицы классического идеального газа распределены по энергиям согласно распределению Больцмана (см. Больцмана статистика).

Модель идеального газа можно использовать при изучении реальных газов, так как в условиях, близких к нормальным, а также при низких давлениях и высоких температурах реальные газы близки по свойствам к идеальному газу.

В современной физике понятие идеальный газ применяют для описания любых слабовзаимодействующих частиц и квазичастиц, бозонов и фермионов . Внеся поправки, учитывающие собственный объем молекул газа и действующие межмолекулярные силы, можно перейти к теории реальных газов.

При понижении температуры Т газа или увеличении его плотности n до определенного значения становятся существенными волновые (квантовые) свойства частиц идеального газа. Переход от классического идеального газа к квантовому происходит при таких значениях Т и n , при которых длины Волн де Бройля частиц, движущихся со скоростями порядка тепловых, сравнимы с расстоянием между частицами.

В квантовом случае различают два вида идеального газа: если частицы газа одного вида имеют спин, равный единице, то к ним применяют статистику Бозе - Эйнштейна , если частицы имеют спин, равный Ѕ , то применяют статистику Ферми - Дирака . Применение теории идеального газа Ферми - Дирака к электронам в металлах позволяет объяснить многие свойства металлического состояния.

Простейшим объектом исследования идеальный газ. Идеальным газом называется газ, молекулы которого имеют пренебрежимо малый размер и не взаимодействуют на расстоянии. А при столкновениях взаимодействуют, как абсолютно упругие шары. Идеальный газ – абстракция. Но это понятие полезное, так как упрощает инженерные расчеты тепловых машин и процессов в них происходящих.

Основными параметрами газа, характеризующими его состояние являются объем, давление,, и температура,.

3. Атомная единица массы (а.Е.М.).

Массы молекул очень малы,
10 -27 кг. Поэтому для характеристики масс атомов и молекул применяют величины, получившие название атомной единицы массы элемента или молекулы,

1а.е.м. = 1,67 10 -27 кг =
.

Массы всех атомов и молекул измеряют в а.е.м.:

= 12 а.е.м.,
= 14 а.е.м.,
= 16 а.е.м.

Относительной молекулярной (
) или атомной () массой называется отношение массы молекулы или атома к (1/12) массы атома углерода
.

Как видно из определения
- безразмерные величины. Единица массы, равная (1/12) массы атома углерода
называется атомной единицей массы. (а.е.м.). Обозначим эту единицу (то есть а.е.м.), выраженную в килограммах через
. Тогда масса атома будет равна
, а масса молекулы -
.

Количество вещества, которое содержит число частиц (атомов или молекул), равное числу атомов в 0,012 кг изотопа
, называется молем.

Число частиц, содержащихся в моле вещества называется числом Авогадро,
= 6,022 10 23 моль -1 . Массу моля называют молярной массой,

(1)

В случае углерода

= 1,66 10 -27 кг.

Из (2) следует, что

= 0,001 кг/моль. (3)

Подставляя (3) в (1), имеем

= 0,001
кг/моль

=
г/моль.

Таким образом, масса моля, выраженная в граммах, численно равна относительной молекулярной массе.

= 12а.е.м.
= 12 г/моль,

= 16а.е.м.
= 16 г/моль,

= 32а.е.м.

= 32 г/моль.

4. Свойства идеального газа.

Размеры молекул порядка 1 А =10 -10 м.

Давление равно силе, действующей перпендикулярно на единичную площадку,
. Давление в СИ измеряется в Па (паскалях). Па = н/м 2 , 1 кг/см 2 = 1 атм = 9,8 10 4 Па, 1 мм рт.ст. = 133 Па.

5. Уравнение Менделеева-Клапейрона.

При небольших плотностях газы подчиняются уравнению

Уравнение состояния идеального газа Менделеева-Клапейрона, - число молей,= 8,31 Дж/моль К. Можно уравнению придать другой вид, если ввести величины

= 1,38 10 -23 Дж/К:

.

Если
- концентрация частиц, то

.

Если
, то

.

Это выражение используется в аэродинамике.

6. Основное уравнение кинетической теории газов (уравнение Клаузиуса).

Основное уравнение молекулярно кинетической теории связывает параметры состояния газа с характеристиками движения молекул.

Для вывода уравнения используется статистический метод, то есть зная характеристики отдельных молекул газа
(концентрация) можно найти- давление газа, характеристику всего газа.

Для вывода уравнения рассмотрим одноатомный идеальный газ. Молекулы движутся хаотически. Скорости молекул разные. Предположим, что число взаимных столкновений между молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, соударения молекул со стенками сосуда абсолютно упруги. Найдем давление на стенки сосуда, предположив, что газ находится в сосуде кубической формы с ребром . Давление ищем как усредненный результат ударов молекул газа о стенки сосуда.

1). По третьему закону Ньютона стенка получает импульс от каждой молекулы

2). За время
площадки
достигают только те молекулы, которые заключены в объеме

3). Число этих молекул в объеме
равно

.

4). Число ударов о площадку равно
.

5). При столкновении молекулы передают площадке импульс

Учитывая, что
- сила, а
- давление,

имеем для давления

(1)

Если в объеме газ содержит
молекул, которые движутся со скоростями
, то надо ввести понятие о среднеквадратичной скорости по формуле

. (2)

Тогда выражение (1) примет вид

=

Основное уравнение кинетической теории газов.

Это уравнение можно преобразовать, замечая, что

.

.

С другой стороны

.

.

Средняя кинетическая энергия хаотического движения молекул прямо пропорциональна температуре и не зависит от массы. При Т=0
= 0, движение молекул газа прекращается и давление равно нулю.

Абсолютная температура, Т – это мера средней кинетической энергии поступательного движения молекул идеального газа. Но это верно лишь при умеренных температурах, пока нет распада или ионизации молекул и атомов. Если число частиц в системе мало, то это тоже неверно, так как нельзя ввести понятие средней квадратичной скорости.

Из
и
следует

=.

Наука физика играет значимую роль в изучении окружающего мира. Поэтому ее понятия и законы начинают проходить еще в школе. Свойства вещества измеряются в разных аспектах. Если рассматривать его агрегатное состояние, то здесь существует особая методика. Идеальный газ - это физическая концепция, которая позволяет оценить свойства и характеристики материала, из которого состоит весь наш мир.

Общее определение

Идеальным газом названа модель, в которой взаимодействием между молекулами принято пренебрегать. Процесс взаимодействия частиц любого вещества друг с другом довольно сложный.

Когда они подлетают друг к другу вплотную и находятся на очень малом расстоянии, они сильно взаимоотталкиваются. Но на большой удаленности между молекулами действуют относительно небольшие силы притяжения. Если же среднее расстояние, на котором они находятся друг от друга, большое, это положение вещества называют разреженным газом. Взаимодействие таких частиц проявляется как редкие удары молекул. Это происходит, лишь когда они подлетают вплотную друг к другу. В идеальном же газе взаимодействие молекул не учитывается вообще. В идеальном газе количество молекул очень большое. Поэтому вычисления происходят только при помощи статистического метода. Причем следует отметить, что частички вещества в таком случае распределяются в пространстве равномерно. Это самое часто встречающееся состояние идеального газа.

Когда газ можно считать идеальным

Существует несколько факторов, благодаря которым газ называется идеальным. Первым признаком является поведение молекул как абсолютно упругих тел, между ними отсутствуют силы притяжения. При этом газ будет очень разряжен. Расстояние между мельчайшими составляющими вещества будет гораздо больше размеров их самих. В таком случае тепловое равновесие будет достигаться мгновенно по всему объему. Чтобы достичь положения идеального газа в лабораторных условиях, реальный его тип разрежается соответствующим образом. Некоторые вещества в газообразном состоянии даже при комнатной температуре и нормальном атмосферном давлении практически не отличаются от идеального состояния.

Границы применения модели

Иеальный газ рассматривается в зависимости от поставленных задач. Если перед исследователем поставлена задача определить зависимость между температурой, объемом и давлением, то идеальным можно считать такое состояние вещества, при котором у газа наблюдается высокая точность до давлений, измеряемых несколькими десятками атмосфер. Но в случае изучения фазового перехода, например, испарения и конденсации, процесса достижения равновесия в газе, рассматриваемую модель нельзя применять даже при очень маленьком давлении. Давление газа на стенку пробирки происходит при хаотическом ударении молекул о стекло. Когда такие удары часты, организм человека может уловить эти изменения как непрерывное воздействие.

Уравнение идеального газа

Основываясь на главных принципах молекулярно-кинетической теории, было выведено главное уравнение идеального газа.

Работа идеального газа имеет следующее выражение: p = 1 / 3 m 0 nv 2 , где p - давление газа идеального, m 0 - молекулярная масса, v 2 - среднее значение концентрации частиц, квадрат скорости молекул. Если обозначить средний показатель кинетического движения частиц вещества, как Ек = m 0 n/ 2 , то уравнение будет иметь такой вид: p = 2 / 3 nEk. Молекулы газа, ударяясь о стенки сосуда, вступают с ними во взаимодействие как упругие тела по законам механики. Импульс от таких ударов передается стенкам сосуда.

Температура

Вычислив только давление газа на стенки сосуда, нельзя определить средний показатель кинетической энергии его частиц.

Причем этого нельзя сделать ни для отдельной молекулы, ни для их концентрации. Поэтому для измерения параметров газа необходимо определять еще одну величину. Ею выступает температура, которая также связана с кинетической энергией молекул. Такой показатель выступает скалярной физической величиной. Температура описывает термодинамическое равновесие. В таком состоянии не происходит изменение параметров на микроуровне. Температура измеряется как отклонение от нулевого значения. Она характеризует насыщенность хаотического движения наименьших частиц газа. Она измеряется средним значением их кинетической энергии. Определяется этот показатель при помощи термометров в градусах различных отметок. Существует термодинамическая абсолютная шкала (Кельвина) и эмпирические ее разновидности. Они отличаются начальными точками.

Уравнение положения идеального газа с учетом температуры

Физик Больцман утверждает, что средний показатель кинетической энергии частицы пропорционален абсолютному показателю температуры. Ек = 3 / 2 кТ, где к = 1,38∙10-23, Т - температура. Работа идеального газа будет равна: Р = NkT/V, где N - количество молекул, V - объем сосуда. Если к этому показателю добавить концентрацию n = N/V, то вышеприведенная формула будет иметь такой вид: p = nkT. Эти два уравнения имеют различные формы записи, но они связывают для идеального газа давление, объем и температуру. Эти вычисления можно применять как к чистым газам, так и к их смесям. В последнем варианте под n нужно понимать все число молекул веществ, их суммарную концентрацию или полное количество молей в веществе.

Три газовых закона

Идеальный газ и его частные законы были открыты экспериментально и лишь потом подтверждены теоретически.

Первый частный закон гласит, что идеальный газ при постоянной массе и температуре будет иметь обратно пропорциональное давление его объему. Процесс, при котором показатель температуры постоянный, был назван изотермическим. Если же при исследовании постоянным является давление, то объем пропорционален значению абсолютной температуры. Этот закон носит имя Гей-Люссака. Изохорный же процесс происходит при постоянном объеме. При этом давление будет пропорционально абсолютным температуре. Его название - закон Шарля. Это три частных закона поведения идеального газа. Их удалось подтвердить лишь при овладении знаниями о молекулах.

Абсолютная шкала измерения

В абсолютной шкале измерения принято единицей называть Кельвин. Она выбрана исходя из популярной шкалы Цельсия. Один Кельвин соответствует одному градусу по Цельсию. Но в шкале абсолютной за ноль принято значение, при котором давление идеального газа при постоянном объеме будет равно нулю.

Это общепринятая система. Такое значение температуры названо абсолютным нулем. Произведя соответствующие вычисления, можно получить ответ, что значение этого показателя будет составлять -273 градуса по Цельсию. Это подтверждает, что между абсолютной и шкалой Цельсия существует связь. Ее можно выразить в таком уравнении: Т = t + 237. Следует отметить, что достичь абсолютного нуля невозможно. Любой охладительный процесс основан на испарении с поверхности вещества молекул. Приближаясь к абсолютному нулю, поступательное движение частиц так сильно замедляется, что испарение прекращается практически совсем. Но чисто с теоретической точки зрения если бы было реально достичь точки абсолютного нуля, то скорость движения молекул уменьшилась бы настолько, что ее можно было бы назвать отсутствующей вовсе. Тепловое движение молекул прекратилось бы.

Изучив такое понятие, как идеальный газ, можно понять принцип работы любого вещества. Расширив знания в этой области, можно понять свойства и поведение любого газообразного вещества.

Идеальный газ - математическая модель газа, в которой предполагается, что потенциальной энергией молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

2. Что такое степени свободы молекул? Как число степеней свободы связано с коэффициентом Пуассона γ?

Числом степеней свободы тела называется число независимых координат, которые необходимо задать для того, чтобы полностью определить положение тела в пространстве. Так, например, материальная точка, произвольно движущаяся в пространстве, обладает тремя степенями свободы (координаты x, y, z).

Молекулы одноатомного газа можно рассматривать как материальные точки на том основании, что масса такой частицы (атома) сосредоточена в ядре, размеры которого очень малы (10 -13 см). Поэтому молекула одноатомного газа может иметь лишь три степени свободы поступательного движения.

Молекулы, состоящие из двух, трех и большего числа атомов, не могут быть уподоблены материальным точкам. Молекула двухатомного газа в первом приближении представляет собой два жестко связанных атома, находящихся на некотором расстоянии друг от друга

3. Чему равна теплоемкость идеального газа при адиабатическом процессе?

Теплоемкостью называется величина, равная количеству теплоты, которое нужно сообщить веществу, чтобы повысить его температуру на один кельвин.

4. В каких единицах измеряются в системе си давление, объем, температура, молярные теплоемкости?

Давление – кПа, объем – дм 3 , температура – в Кельвинах, молярные теплоемкости – Дж/(мольК)

5. Что такое молярные теплоемкости Ср и Сv?

У газа различают теплоемкость при постоянном объеме С v и теплоемкость при постоянном давлении С р.

При постоянном объеме работа внешних сил равна нулю, и все сообщаемое газу извне количество теплоты идет целиком на увеличение его внутренней энергии U. Отсюда молярная теплоемкость газа при постоянном объеме С v численно равна изменению внутренней энергии одного моля газа ∆Uпри повышении его температуры на 1К:

∆U=i/2*R(T+1)-i/2RT=i/2R

Таким образом, молярная теплоемкость газа при постоянном объеме

С v =i/2R

удельная теплоемкость при постоянном объеме

С v =i/2*R/µ

При нагревании газа при постоянном давлении газ расширяется, сообщаемое ему извне количество теплоты идет не только на увеличение его внутренней энергии U, но и на совершение работыAпротив внешних сил. Следовательно, теплоемкость газа при постоянном давлении больше теплоемкости при постоянном объеме на величину работыA, которую совершает один моль газа при расширении, происходящем в результате повышения его температуры на 1Kпри постоянном давленииP:

С р = С v +A

Можно показать, что для моля газа работа A=R, тогда

С р = С v +R=(i+2)/2*R

Пользуясь соотношением между удельными в молярными теплоемкостями, находим для удельной теплоемкости:

С р = (i+2)/2*R

Непосредственное измерение удельных и молярных теплоемкостей затруднительно, так как теплоемкость газа составит ничтожную долю теплоемкости сосуда, в котором находится газ, и поэтому измерение будет чрезвычайно неточно.

Проще измерить отношение величии С р / С v

γ=С р / С v =(i+2)/i.

Это отношение зависит только от числа степеней свободы молекул, из которых состоит газ.