Прокариоты презентация. Прокариоты и эукариоты - презентация






Цели урока: изучить специфические особенности клеток растений, животных и грибов; выявить общие структуры в их строении; продолжить формирование представлений о двух уровнях клеточной организации – прокариотической и эукариотической; познакомить обучающихся с особенностями строения и жизнедеятельности прокариотических клеток.





Маттиас Якоб Шлейден (), немецкий ботаник, один из создателей теории клеточного строения. Теодор Шванн (), немецкий гистолог и физиолог, один из создателей клеточной теории






Сходства в строении растительной, животной и грибной клеток Все ядерные клетки покрыты тончайшей мембраной, которая защищает внутреннее содержимое клеток, связывает их между собой и с внешней средой. Важнейший органоид всех клеток растений, животных и грибов ядро. Обычно оно находится в центре клетки и содержит одно или несколько ядрышек. В ядре имеются хромосомы специальные тельца, которые становятся видимыми только во время деления ядра. Они хранят наследственную информацию.


Сходства в строении растительной, животной и грибной клеток Обязательная часть клеток растений, животных и грибов бесцветная полужидкая цитоплазма. Она заполняет пространство между мембраной и ядром. В цитоплазме, кроме ядра, находятся и другие органоиды, а также запасные питательные вещества. Выводы: Общие черты в строении ядерных клеток говорят о родстве и единстве их происхождения.


















Цитоплазма оболочка вакуоль ядро комплекс Гольджи рибосомы пластиды митохондрии 8 Размести цифры, согласно указанным терминам эндоплазматическая сеть 9
Задание: изучите текс учебника п. 2.7., составьте таблицу «Сходство и различия между прокариотами и эукариотами» Структура Эукариотическая клетка Прокариотическа я клетка Клеточная стенка Клеточная мембрана Ядро Хромосомы ЭПС Рибосомы Комплекс Гольджи Лизосомы Митохондрии Вакуоли Пластиды


Особенности строения прокариот -Прокариотическим клеткам присущи все важнейшие жизненные функции, но у них нет окруженных мембраной органелл, имеющихся в эукариотических клетках. -Самая важная особенность прокариотов в том, что у них нет окруженного мембраной ядра. Именно этот признак является решающим при делении клеток на прокариотические и эукариотические.


Задание на дом: - Изучите § 2.7., записи в тетради; - повторите; - подготовьтесь к тестированному опросу «Клеточное строение организмов»





Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Тема: «Сравнение клеток прокариот и эукариот». Разработала: Левша Т.Г. Учитель биологии МБОУ гимназия № 9 г. Воронеж Все живые организмы на Земле принято подразделять на доклеточные формы, которые не имеют типичного клеточного строения (это вирусы и бактериофаги), и клеточные, имеющие типичное клеточное строение. Эти организмы в свою очередь подразделяют на две категории: 1) доядерные или прокариоты, которые не имеют типичного ядра. К ним относят бактерии и сине-зеленые водоросли; 2) ядерные эукариоты, которые имеют типичное четко оформленное ядро. Это все остальные организмы. Растения, грибы, животные. Прокариоты возникли гораздо раньше эукариот (в архейскую эру). Это очень маленькие клетки размером от 0,1 до 10 мкм. Иногда встречаются гигантские клетки до 200 мкм. Каждая эукариотическая клетка имеет обособленное ядро, в котором заключен отграниченный от матрикса ядерной мембраной генетический материал (это главное отличие от прокариотических клеток). Генетический материал сосредоточен преимущественно в виде хромосом, имеющих сложное строение и состоящих из нитей ДНК и белковых молекул. Деление клеток происходит посредством митоза (а для половых клеток – мейоза). Среди эукариотов есть как одноклеточные, так и многоклеточные организмы.

2 слайд

Описание слайда:

Цель: Систематизировать и обобщить знания о строении клеток растений, животных, грибов, бактерий. Продолжить развитие умения сравнивать строение клеток прокариот и эукариот, объяснять причины их сходства и различия. Сформировать убежденность в том, что разные организмы гомологичны по происхождению и строению. Существует несколько теорий происхождения эукариотических клеток, одна из них – эндосимбионтическая. В гетеротрофную анаэробную клетку проникла аэробная клетка типа бактериоподобной, которая послужила базой для появления митохондрий. В эти клетки начали проникать спирохетоподобные клетки, которые дали начало формированию центриолей. Наследственный материал отгородился от цитоплазмы, возникло ядро, появился митоз. В некоторые эукариотические клетки проникли клетки типа сине-зеленых водорослей, которые положили начало появлению хлоропластов. Так впоследствии возникло царство растений.

3 слайд

Описание слайда:

Строение бактериальной клетки Клеточная стенка Плазматическая мембрана нить ДНК Рибосома Мезосомы Жгутики Капсула Цитоплазма Включения Бактериальная клетка ограничена оболочкой. Внутренний слой оболочки представлен цитоплазматической мембраной, над которой находится клеточная стенка, над клеточной стенкой у многих бактерий - слизистая капсула. Строение и функции цитоплазматической мембраны эукариотической и прокариотической клеток не отличаются. Мембрана может образовывать складки, называемые мезосомами. Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые и др.). На поверхности мезосом располагаются ферменты. Клеточная стенка толстая, плотная, жесткая, состоит из муреина и других органических веществ. Внутреннее пространство заполнено цитоплазмой. Генетический материал представлен кольцевыми молекулами ДНК. Эти ДНК можно условно разделить на «хромосомные» и плазмидные. «Хромосомная» ДНК - одна, прикреплена к мембране, содержит несколько тысяч генов, в отличие от хромосомных ДНК эукариот она не линейная, не связана с белками. Зона, в которой расположена эта ДНК, называется нуклеоидом. Плазмиды - внехромосомные генетические элементы. Представляют собой небольшие кольцевые ДНК, не связаны с белками, не прикреплены к мембране, содержат небольшое число генов, принимающие участие в половом процессе (F-фактор). Плазмида, способная объединяться с хромосомой, называется эписомой. В бактериальной клетке отсутствуют все мембранные органоиды, характерные для эукариотической клетки (митохондрии, пластиды, ЭПС, аппарат Гольджи, лизосомы). В цитоплазме бактерий находятся рибосомы 70S-типа и включения. Функция рибосом: сборка полипептидной цепочки. У многих бактерий имеются жгутики и пили. Жгутики не ограничены мембраной, имеют волнистую форму и состоят из сферических субъединиц белка флагеллина. Эти субъединицы расположены по спирали и образуют полый цилиндр диаметром 10–20 нм. Жгутик прокариот по своей структуре напоминает одну из микротрубочек эукариотического жгутика. Пили - прямые нитевидные структуры на поверхности бактерий. Представляют собой короткие полые цилиндры из белка пилина. Пили служат для прикрепления бактерий к субстрату и друг к другу. Во время конъюгации образуются особые F-пили, по которым осуществляется передача генетического материала от одной бактериальной клетки к другой.

4 слайд

Описание слайда:

Строение растительной клетки Мембрана Цитоплазма Хлоропласты Клеточная стенка Ядро ЭПС Вакуоль Рибосомы Митохондрии Растительные клетки имеют особенности, которые характерны только для них – наличие пластид. Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты - бесцветные пластиды в клетках неокрашенных частей растений, хромопласты - окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты - зеленые пластиды. Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр - от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом. Группа тилакоидов, уложенных наподобие стопки монет, называется граной. В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами - ламеллами. В мембраны тилакоидов встроены фотосинтетические пигменты (хлорофилл)и ферменты, обеспечивающие синтез АТФ. Внутреннее пространство заполнено стромой. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа. Пластиды имеют общее происхождение, между ними возможны взаимопревращения. Вакуоли - одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

5 слайд

Описание слайда:

Строение животной клетки Ядро Ядрышко Гранулярная ЭПС Аппарат Гольджи Плазматическая мембрана Рибосомы Лизосомы Клеточный центр Митохондрии Цитоплазма В животной клетке имеются лизосомы - одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки. После отделения от аппарата Гольджи становятся - лизосомами. Они могут содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом. В клетках находится клеточный центр, который включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками.

6 слайд

Описание слайда:

Строение грибной клетки Клеточная стенка Цитоплазма Ядро с ядрышком Включения Вакуоль У множества клеток грибов имеется клеточная стенка. У большинства основным полисахаридом является хитин, у оомицетов – целлюлоза. Также в состав клеточной стенки входят белки, липиды и полифосфаты. Внутри находится протопласт, окружённый цитоплазматической мембраной. Протопласт имеет строение типичное для эукариот. В цитоплазме клеток грибов различимы рибосомы, митохондрии, аппарат Гольджи, ЭПС. В цитоплазме часто присутствуют микротельца - округлые или овальные мембранные структуры. Возможно, они являются предшественниками лизосом или пероксисом – органелл, содержащих соответственно гидролитические ферменты или каталазу. В растущих участках гиф содержаться везикулы, происходящие от ЭПС. Они участвуют в транспорте веществ от аппарата Гольджи к месту синтеза клеточной стенки. В клетке гриба находится от 1 до 20-30 ядер. Их размер обычно около 2-3 мкм. Ядра грибов имеют типичное строение. Они окружены оболочкой из двух мембран. Есть запасающие вакуоли, содержащие волютин, липиды, гликоген, жирные кислоты и другие вещества. Ядер одно или несколько.

7 слайд

Описание слайда:

Геном грибов, как и у всех эукариот, состоит из ядерных и митохондриальных ДНК. Кроме того, к элементам, отвечающим за наследственность, относят плазмиды. По размеру и строению ядерного генома настоящие грибы занимают как бы промежуточное положение между прокариотами и остальными эукариотами. Грибные плазмиды могут находиться в ядре, митохондриях или в цитоплазме и представляют собой линейные или кольцевые молекулы ДНК. Между клеточной стенкой и цитоплазматической мембраной располагаются ломасомы – мембранные структуры, имеющие вид многочисленных пузырьков.

8 слайд

Описание слайда:

Признаки сравнения Прокариоты Эукариоты Клеточная стенка Ядро Ядрышко Хромосомы, их строение ДНК Плазмиды-внехромосомныедобавочные кольца ДНК Клеточная стенка – жёсткая оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинства бактерий, архей, грибов и растений. Клетки животных и многих простейших не имеют клеточной стенки. Плазматическая (клеточная) мембрана – поверхностная, периферическая структура, окружающая протоплазму растительных и животных клеток. Ядро – обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов. Термин «ядро» (лат. nucleus) впервые применил Р. Броун в 1833 году, когда описывал шарообразные структуры, наблюдаемые им в клетках растений. Цитоплазма – внеядерная часть клетки, в которой содержатся органоиды. Ограничена от окружающей среды плазматической мембраной. Хромосомы – структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма.

9 слайд

Описание слайда:

Признаки сравнения Прокариоты Эукариоты Клеточная стенка Содержитмуреин,цианобактерии– целлюлозу +муреин+пектиновые вещества. У растений – целлюлозу. У грибов – хитин. У животных – нет. Ядро Ядрышко Обособленного ядра нет. Отсутствует. Обособленноеядро, от цитоплазмы отделенное двойной мембраной.Есть. Хромосомы, их строение 1 кольцеваяхромосома. Хромосомылинейные. Определённое для каждого вида. ДНК ДвухцепочечнаяДНК не связанная с белками гистонами. ДвухцепочечнаяДНК связана с белками гистонами. Плазмиды-внехромосомныегенетические элементы Имеются в цитоплазме. У митохондрийи пластид.

10 слайд

Описание слайда:

Признаки сравнения Прокариоты Эукариоты Одномембранныеорганоиды Двухмембранныеорганоиды Рибосомы Клеточный центр Эндоплазматический ретикулум (ЭПС) – клеточный органоид; система канальцев, пузырьков и «цистерн», отграниченных мембранами. Расположена в цитоплазме клетки. Участвует в обменных процессах, обеспечивая транспорт веществ из окружающей среды в цитоплазму и между отдельными внутриклеточными структурами. Комплекс Гольджи (аппарат Гольджи) – органоид клетки, участвующий в формировании продуктов ее жизнедеятельности (различных секретов, коллагена, гликогена, липидов и др.), в синтезе гликопротеидов. Лизосомы – структуры в клетках животных и растительных организмов, содержащие ферменты, способные расщеплять (т. е лизировать - отсюда и название) белки, полисахариды, пептиды, нуклеиновые кислоты. Вакуоли – полости, заполненные жидкостью (клеточным соком), в цитоплазме растительных и животных клеток. Митохондрии – органеллы животных и растительных клеток. В митохондрии протекают окислительно-восстановительные реакции, обеспечивающие клетки энергией. Число митохондрий в одной клетке от единиц до нескольких тысяч. У прокариот отсутствуют (их функцию выполняет клеточная мембрана). Хлоропласты – внутриклеточные органоиды растительной клетки, в которых осуществляется фотосинтез; окрашены в зеленый цвет (в них присутствует хлорофилл). Рибосомы – внутриклеточные частицы, состоящие из рибосомной РНК и белков. Присутствуют в клетках всех живых организмов.

11 слайд

Описание слайда:

Признаки сравнения Прокариоты Эукариоты Одномембранныеорганоиды Отсутствуют. Их функцию выполняют выросты клеточной мембраны. ЭПС, аппаратГольджи, вакуоли, лизосомыи т.д. Двухмембранныеорганоиды Отсутствуют. Митохондрии, пластиды. Рибосомы Мельче,чем у эукариот – 70S. В цитоплазме свободно. Крупные, 80S. В цитоплазмесвободно или связаныс ЭПС. В пластидах и митохондриях - 70S. Клеточный центр Отсутствуют. Имеются у животных, грибов, у водорослейи мхов.

12 слайд

Описание слайда:

Признаки сравнения Прокариоты Эукариоты Мезосома Организация генома Способы деления клетки Аэробное клеточное дыхание Фотосинтез Мембрана в клетках прокариот может образовывать складки, которые называются мезосомами. Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые). На поверхности мезосом располагаются ферменты. Реснички – тонкие нитевидные и щетинковидные выросты клеток, способные совершать движения. Характерны для инфузорий, ресничных червей, у позвоночных и человека - для эпителиальных клеток дыхательных путей, яйцеводов, матки. Жгутики – нитевидные подвижные цитоплазматические выросты клетки, свойственные многим бактериям, всем жгутиковым, зооспорам и сперматозоидам животных и растений. Служат для передвижения в жидкой среде. Микротрубочки – белковые внутриклеточные структур, входящие в состав цитоскелета. Представляют собой полые внутри цилиндры диаметром 25 нм. В клетках микротрубочки играют роль структурных компонентов и участвуют во многих клеточных процессах, включая митоз, цитокенез и везикулярный транспорт.

13 слайд

Характеристика бактерий Распространены повсеместно: в воде, почве, воздухе, живых организмах. Они обнаруживаются как в самых глубоких океанических впадинах, так и на высочайшей горной вершине Земли Эвересте, как во льдах Арктики и Антарктиды, так и в горячих источниках. В почве они проникают на глубину 4 и более км, споры бактерий в атмосфере встречаются на высоте до 20 км, гидросфера вообще не имеет границ обитания этих организмов. Бактерии способны поселяться практически на любом как органическом, так и неорганическом субстрате. Несмотря на простоту строения, они обладают высокой степенью приспособленности к самым разнообразным условиям среды. Это возможно благодаря способности бактерий к быстрой смене поколений. При резкой смене условий существования среди бактерий быстро появляются мутантные формы, способные существовать в новых условиях среды.


Размеры от 1 до 15 мкм. По форме клеток различают: Шаровидные кокки: микрококки делятся в разных плоскостях, лежат одиночно; диплококки делятся в одной плоскости, образуют пары; тетракокки делятся в двух плоскостях, образуют тетрады; стрептококки делятся в одной плоскости, образуют цепочки; стафилококки делятся в разных плоскостях, образуют скопления, напопоминающие грозди винограда; сарцины делятся в трех плоскостях, образуют пакеты по 8 особей. Характеристика бактерий


Вытянутые бациллы (палочковидные) делятся в разных плоскостях, лежат одиночно; Извитые – вибрионы (в виде запятой); спириллы имеют от 4 до 6 витков; спирохеты длинные и тонкие извитые формы с числом витков от 6 до 15. Помимо основных, в природе встречаются и другие, весьма разнообразные, формы бактериальных клеток. Характеристика бактерий


Клеточная стенка. Бактериальная клетка заключена в плотную, жесткую клеточную стенку, на долю которой приходится от 5 до 50% сухой массы клетки. Клеточная стенка выполняет роль наружного барьера клетки, устанавливающего контакт микроорганизма со средой. Основным компонентом клеточной стенки бактерий является полисахарида муреин. По содержанию муреина все бактерии подразделяются на две группы: грамположительные и грамотрицательные. Характеристика бактерий


У многих бактерий поверх клеточной стенки располагается слизистый матрикс капсула. Капсулы образованы полисахаридами. Иногда в состав капсулы входят полипептиды. Как правило, капсула выполняет защитную функцию, предохраняя клетку от действия неблагоприятных факторов среды. Кроме того, она может способствовать прикреплению к субстрату и участвовать в передвижении. Характеристика бактерий


Цитоплазматическая мембрана регулирует поступление питательных веществ в клетку и выход продуктов метаболизма наружу. Обычно темпы роста цитоплазматической мембраны опережают темпы роста клеточной стенки. Это приводит к тому, что мембрана часто образует многочисленные инвагинации (впячивания) различной формы мезосомы. Характеристика бактерий


Мезосомы, связанные с нуклеоидом, играют определенную роль в репликации ДНК и последующем расхождении хромосом. Возможно, мезосомы обеспечивают разделение клетки на отдельные обособленные отсеки, создавая тем самым благоприятные условия для протекания ферментативных процессов. Характеристика бактерий







Бактериальные клетки могут иметь разнообразные цитоплазматические включения газовые пузырьки, пузырьки, содержащие бактериохлорофилл, полисахариды, отложения серы и другие. Нуклеоид. Бактерии не имеют структурно оформленного ядра. Генетический аппарат бактерий называют нуклеоидом. Он представляет собой молекулу ДНК, сосредоточенную в ограниченном пространстве цитоплазмы. Характеристика бактерий


Молекула ДНК имеет типичное строение. Она состоит из двух полинуклеотидных цепей, образующих двойную спираль. В отличие от эукариот, ДНК имеет кольцевую структуру, а не линейную. Молекулу ДНК бактерий отождествляют с одной хромосомой эукариот. Но если у эукариот в хромосомах ДНК связана с белками, то у бактерий ДНК комплексов с белками не образует. ДНК бактерий закреплена на цитоплазматической мембране в области мезосомы. Характеристика бактерий


Клетки многих бактерий имеют нехромосомные генетические элементы плазмиды. Они представляют собой небольшие кольцевые молекулы ДНК, способные реплицироваться независимо от хромосомной ДНК. Среди них различают F-фактор плазмиду, контролирующую половой процесс. Жгутики. Среди бактерий имеется много подвижных форм. Основную роль в передвижении играют жгутики. Жгутики бактерий только внешне похожи на жгутики эукариот, строение же их иное. Они имеют меньший диаметр и не окружены цитоплазматической мембраной. Нить жгутика состоит из 3-11 винтообразно скрученных фибрилл, образованных белком флагеллином. Характеристика бактерий




У основания располагается крюк и парные диски, соединяющие нить с цитоплазматической мембраной и клеточной стенкой. Движутся жгутики, вращаясь в мембране. Число и расположение жгутиков на поверхности клетки может быть различно. Фимбрии это тонкие нитевидные структуры на поверхности бактериальных клеток, представляющие собой короткие прямые полые цилиндры, образованные белком пилином. Благодаря фимбриям, бактерии могут прикрепляться к субстрату или сцепляться друг с другом. Особые фимбрии половые фимбрии, или F- пили обеспечивают обмен генетического материала между клетками. Характеристика бактерий


При наступлении неблагоприятных условий, у грамположительных бактерий происходит образование эндоспор. При этом клетка обезвоживается, нуклеоид сосредотачивается в спорогенной зоне. Образуются защитные оболочки, предохраняющие споры бактерий от действия неблагоприятных условий (споры многих бактерий выдерживают нагревание до 130˚С, сохраняют жизнеспособность десятки лет). При наступлении благоприятных условий спора прорастает, и образуется вегетативная клетка. Характеристика бактерий


Подведем итоги: Что известно о форме бактерий? Кокки (диплококки, тетракокки, стрептококки, сарцины, стафилококки), бациллы, вибрионы, спириллы, спирохеты). Каковы размеры бактерий? От 1 до 15 микрон (мкм). Как устроена клеточная оболочка бактерии? Плазмалемма и клеточная стенка из муреина. У грам-отрицательных две мембраны. Как организован генетический материал бактерий? Нуклеоид – кольцевая ДНК и плазмиды. Какие органоиды есть в бактериальных клетках? Мезосомы, хлоросомы, 70-S рибосомы, жгутики. Чем жгутик бактерий отличается от жгутика эукариот? Не покрыт мембраной, состоит из нескольких скрученных вместе фибилл флагеллина. Могут ли бактерии размножаться спорами? Нет споры – способ переживания неблагоприятных условий.


Олимпиадникам! Спорообразующие аэробные бактерии, у которых размер споры не превышает диаметр клетки, называются бациллами. Спорообразующие анаэробные бактерии, у которых размер споры превышает диаметр клетки, и поэтому они принимают форму веретена и называются клостридиями (от лат. Clostridium – веретено). Характеристика бактерий


Олимпиадникам! Риккетсии – мелкие, грамотрицательные палочковидные бактерии размером до 1 мкм. Членистоногие – их хозяева и переносчики. У человека вызывают сыпной тиф, клещевой риккетсиоз, пятнистую лихорадку Скалистых гор. Микоплазмы – мелкие бактерии, не имеющие клеточной стенки, окруженные только цитоплазматической мембраной. Осмотически чувствительны, у человека вызывают заболевание по типу респираторной инфекции. Актиномицеты – (лучистые грибы), занимают промежуточное положение между бактериями и грибами. Ветвящиеся грамположительные бактерии. В пораженных тканях образуют мицелий из плотно переплетенных нитей (гифов) в виде лучей, отходящих от центра и заканчивающихся колбовидными утолщениями. На воздушных гифах могут образовываться споры, служащие для размножения.




Другая группа, автотрофы, способна синтезировать органические вещества из неорганических. Среди них различают: фотоавтотрофов, синтезирующих органические вещества за счет энергии света, и хемоавтотрофов, синтезирующих органические вещества за счет химической энергии окисления неорганических веществ: серы, сероводорода, аммиака и т.д. К ним относятся нитрифицирующие бактерии, железобактерии, водородные бактерии и т.д. Фотоавтотрофы: Фотосинтезирующие серобактерии (зеленые и пурпурные) Имеют фотосистему-1 и при фотосинтезе не выделяют кислород, донор водорода – Н 2 S: 6СО Н 2 S С 6 Н 12 О S + 6Н 2 О У цианобактерий (синезеленых) появилась фотосистема-2 и при фотосинтезе кислород выделяется, донором водорода для синтеза органики является Н 2 О: 6СО Н 2 О С 6 Н 12 О 6 + 6О 2 + 6Н 2 О Физиология бактерий


Хемоавтотрофы: Хемоавтотрофы используют энергию химических связей. Открыты в 1887 году С.Н.Виноградским. Важнейшая группа хемоавтотрофов – нитрифицирующие бактерии, способные окислять аммиак, образующийся при гниении органических остатков, сначала до азотистой, а затем до азотной кислоты: 2NH 3 + 3O 2 = 2HNO 2 + 2H 2 O кДж 2НNО 2 + O 2 = 2HNO кДж Бесцветные серобактерии окисляют сероводород и накапливают в своих клетках серу: 2Н 2 S + О 2 = 2Н 2 О + 2S кДж При недостатке сероводорода бактерии производят дальнейшее окисление серы до серной кислоты: 2S + 3О 2 + 2Н 2 О = 2Н 2 SО кДж Железобактерии окисляют двувалентное железо до трехвалентного: 4FeCO 3 + O 2 + H 2 O = 4Fe(OH) 3 + 4CO кДж Водородные бактерии используют энергию, выделяющуюся при окислении молекулярного водорода: 2Н 2 + О 2 = 2Н 2 О кДж Физиология бактерий


Размножение бактерий. Бактерии способны к интенсивному размножению. Половое размножение у бактерий отсутствует, известно только бесполое размножение. Некоторые бактерии при благоприятных условиях способны делиться каждые 20 минут. Бесполое размножение Бесполое размножение является основным способом размножения бактерий. Оно может осуществляться путем бинарного деления и почкования. Большинство бактерий размножается путем бинарного равновеликого поперечного деления клеток. При этом образуются две одинаковые дочерние клетки. Перед делением происходит репликация ДНК. Почкование. Некоторые бактерии размножаются путем почкования. При этом на одном из полюсов материнской клетки образуется короткий вырост гифа, на конце которого формируется почка, в нее переходит один из поделившихся нуклеоидов. Почка разрастается, превращаясь в дочернюю клетку, и отделяется от материнской в результате формирования перегородки между почкой и гифой. Физиология бактерий



Половой процесс, или генетическая рекомбинация. Половое размножение отсутствует, но известен половой процесс. Гаметы у бактерий не образуются, слияния клеток нет, но происходит главнейшее событие полового процесса обмен генетической информацией. Этот процесс называют генетической рекомбинацией. Часть ДНК (реже вся) клеткой-донором передает клетке-реципиенту и замещает часть ДНК клетки-реципиента. Образовавшуюся ДНК называют рекомбинантной. Она содержит гены обеих родительских клеток. Физиология бактерий


Различают три способа генетической рекомбинации: конъюгация, трансдукция, трансформация; Конъюгация это прямая передача участка ДНК от одной клетки другой во время непосредственного контакта клеток друг с другом. Клетка-донор образует называемых F-пилю, ее образование контролируется особой плазмидой F-плазмидой. Во время конъюгации ДНК передается только в одном направлении (от донора к реципиенту), обратной передачи нет. Физиология бактерий




Участие в круговороте химических элементов (азота, углерода, кислорода и др.). Группы бактерий, принимающих участие в круговороте азота Азотфиксирующие бактерии Использование свободного азота для образования соединений, доступных другими организмами Обогащение почвы соединениями азота Аммонифицирующие бактерии Разложение азотсодержащих веществ (белков, нуклеиновых кислот) с образованием аммиака Минерализация Нитрифицирующие бактерии Окисление солей аммиака в нитриты, затем в нитраты Минерализация Денитрифицирующие бактерии Восстановление нитритов и нитратов до свободного азота Минерализация Значение бактерий Разрушение органических остатков. Участие в почвообразовании. Участие в образовании атмосферы. Использование в пищевой промышленности для получения молочно- кислых продуктов Получение антибиотиков, аминокислот, витаминов и др. Очистка сточных вод, образование метана Симбионты многих организмов (кишечная палочка у человека) Вызывают инфекционные заболевания(туберкулёз, ангина) В настоящее время, используя трансформированные кишечные палочки, получают инсулин, соматотропный гормон, интерферон Значение бактерий




Значение бактерий Этапы: Рестрикция (разрезание ДНК человека и плазмиды рестриктазами) Создание вектора, содержащего все управляющие гены (регулятор, оператор, маркерные гены) Лигирование («вшивание» фрагмента ДНК человека в плазмиды лигазами) Трансформация (введение рекомбинантных плазмид в бактериальные клетки) Скрининг (отбор таких трансформированных бактерий, которые несут нужный для человека ген) Размножение именно тех трансформированных бактерий, которые несут нужный для человека ген.

Прокариотическая клетка Презентацию составила: Слободчикова Н.М. Учитель биологии ГБОУ ЦО №14 59

Цели: Обучающие -расширить и углубить знания о клеточном уровне организмов живой материи на основе изучения особенностей строения прокариотической клетки; -раскрыть роль бактерий. Развивающие - развивать умение находить необходимые сведения в тексте учебника, делать выводы, логическое мышление учащихся, творческие способности, навыки биологической речи. Воспитывающие -воспитывать стремление к знаниям.

Эпиграф На нашей планете обитает великое множество самых различных орга-низмов, и все это многообразие может быть отнесено либо к эукариотам, либо к прокариотам, особенности строения которых необходимо знать. /Вернадский В.И./

Уровни клеточной организации Прокариотическая Эукариотическая Доядерная Ядерная

Определение Прокариоты (от лат. pro - перед, до и греч. κάρῠον - ядро, орех) - организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами МИКРОБИОЛОГИЯ - наука, изучающая микроорганизмы. БАКТЕРИОЛОГИЯ - наука, изучающая бактерии.

Это самые древние организмы на Земле. Сколько чудес таят в себе эти крохотные создания. (А.В. Левенгук) 1675 год Антони Ван Левенгук Впервые увидел бактерии в оптический микроскоп и описал их.

Немного истории 1828 год Христиан Эренберг 1850 год Луи Пастер 1905 год Роберт Кох 1828 год. Христиан Эренберг ввёл в употребление название «бактерии». 1850 год Луи Пастер положил начало изучению физиологии и метаболизма бактерий, а также открыл их болезнетворные свойства. 1905 год Роберт Кох сформулировал общие принципы определения возбудителя болезни, за что он был удостоен Нобелевской премии. Предложил способы дезинфекции.

Кол-во бактерий в 1см 3 почвы Лесная почва на поверхности Лесная почва глубже 1м Луговая почва на поверхности Луговая почва глубже 1м

Кол-во бактерий в 1см 3 воздуха Непроветренная комната Улица города Горный воздух Морской воздух

Кол-во бактерий в 1см 3 воды Снег и лед Ручей в 100 м от ледника Ручей в 5 км от ледника Ключевая вода

Царство Дробянки Бактерии Сине-зеленые водоросли

Разнообразие внешнего строения бактериальных клеток спириллы вибрионы бациллы кокки

Строение клетки прокариот

Клеточная стенка из муреина. Почти нет внутренних мембран. Мезосомы –мембранные структуры, образующиеся путем впячивания плазматической мембраны внутрь цитоплазмы

Примитивность строения выражается: Отсутствие оформленного ядра Наследственная информация заключается в одной молекуле ДНК Нет органоидов кроме рибосом Функции органоидов выполняет мезосомы прочная оболочка

Размножение – делением надвое. Спорообразование Этап жизненного цикла многих прокариот, связанный с переживанием неблагоприятных условий.

Образование спор

Половой процесс. Возникновение новых комбинаций генов –увеличение разнообразия свойств

Роль бактерий в природе Бактерии в природе Участвуют в образовании перегноя Превращают перегной в минеральные вещества Усваивают азот из воздуха Болезнетворные бактерии растений

Некоторые бактерии поселяются в пищеварительном тракте травоядных млекопитающих и насекомых \.обеспечивая переваривание клетчатки.

В природе есть такой процесс, который называется "брожение". Это разложение углеводов. В процессах брожения большую роль играют различные бактерии. Например, при образовании кефира и простокваши из молока, а также квашении капусты очень важны молочнокислые бактерии.

Роль бактерий в жизни человека. Болезнетворные бактерии чума холера

Профилактика заболеваний ПРИВИВКА ИММУНИТЕТ

Сравнительная характеристика клеток Структура клетки Прокариотическая клетка Эукариотическая клетка Рибосомы Комплекс Гольджи Лизосомы Митохондрии Вакуоли Реснички и жгутики § 5.1 стр. 136-142